Proceedings
Authors
| Filter results8 paper(s) found. |
|---|
1. Application Of Precision Agriculture In Carbon Farming Practices Using The Real-time Soil Sensor... Y. Li |
2. Mapping the Leaf Area Index In Vineyard Using a Ground-Based LIDAR ScannerThe leaf area index (LAI) is defined as the one-sided leaf area per unit ground area and is probably the most widely used index to characterize grapevine vigour. However, direct LAI measurement requires the use of destructive leaves sampling methods which are costly and time-consuming and so are other indirect methods. Faced with these techniques, vineyard leaf area can be indirectly estimated using ground-based LIDAR sensors that scan the vines and get information about the geometry and/or structure... J. Arno, I. Del moral, A. Escolà, J. Company, J.A. MartÍnez-casasnovas, J. Masip, R. Sanz, J.R. Rosell |
3. Use Of Vegetation Indices In Variable Rate Application Of Potato Haulm Killing HerbicidesVariable rate application (VRA) of pesticides based on measured spatial variation in crop biomass is possible with currently available crop reflection sensors (remote and proximity), GNSS technology and modern field sprayers. VRA has the potential to contribute to a more sustainable use of pesticide. Dose rates are optimized based on local requirements at a scale of about 5-50 m2, leading to less adverse side effects, less costs and higher yields. In the longer term, we... C. Kempenaar, T. Been, F.V. Evert |
4. Spatial Variability of Canopy Volume in a Commercial Citrus GroveLiDAR (light detection and ranging) sensors have shown good potential to estimate canopy volume and guide variable rate applications in different fruit crops. Oranges are a major crop in Brazil; however the spatial variability of geometrical parameters remains still unknown in large commercial groves, as well as the potential benefit of sensor guided variable rate applications. Thus, the objective of this work was to characterize the spatial variability of the canopy volume in a commercial orange... A.F. Colaço, J.P. Molin, R.G. Trevisan, J.R. Rosell-polo, A. Escolà |
5. Development of Farmland-Terrain Simulation System for Consistency of Seeding DepthA farmland-terrain simulation system suitable for rugged topography was designed to study the irregularities of farmland surface morphology led by both topographic fluctuation and terrain tilt. The system consists of terrain simulation mechanism, hydraulic system, control system, etc. The terrain simulation mechanism is connected to the rack through hydraulic cylinder to simulate farmland surface fluctuation. The hydraulic system controls the hydraulic cylinder to drive the terrain simulation... W. Fu, J. Dong, Y. Cong, N. Gao, Y. Li, Z. Meng |
6. Precision Nitrogen and Water Management for Optimized Sugar Beet Yield and Sugar ContentSugar beet (SB) production profitability is based on maximizing three parameters: beet yield, sucrose content, and sucrose recovery efficiency. Efficient nitrogen (N) and water management are key for successful SB production. Nitrogen deficits in the soil can reduce root and sugar yield. Overapplication of N can reduce sucrose content and increase nitrate impurities which lowers sucrose recovery. Application of N in excess of SB crop need leads to vigorous canopy growth, while compromising root... O.S. Walsh, S. Shafian |
7. Overcoming Educational Barriers for Precision Agriculture Adoption: a University Diploma in Precision Agriculture in ArgentinaThe lack of educational programs in Precision Agriculture (PA) has been reported as one of the barriers for adoption. Our goal was to improve professional competence in PA through education in crop variability, management, and effective practices of PA in real cases. In the last 20 years different efforts has been made in Argentina to increase adoption of PA. The Universidad Nacional de Rio Cuarto (UNRC) launched in 2021 the first University Diploma in PA, a 9-month program to train agronomist... G. Balboa, A. Degioanni, R. Bongiovanni, R. Melchiori, C. Cerliani, F. Scaramuzza, M. Bongiovanni, J. Gonzalez, M. Balzarini, H. Videla, S. Amin, G. Esposito |
8. Predicting Soil Cation Exchange Capacity from Satellite Imagery Using Random Forest ModelsCrop yield variability is often attributed to spatial variation in soil properties. Remote sensing offers a practical approach to capture soil surface properties over large areas, enabling the development of detailed soil maps. This study aimed to predict cation exchange capacity (CEC), a key indicator of soil quality, in the agricultural fields of the Lower Mississippi Alluvial Valley using digital soil mapping techniques. A total of 15,586 soil samples were collected from agricultural fields... I. Muller, J. Czarnecki, M. Li, B.K. Smith |