Proceedings

Find matching any: Reset
Lindsey, A
Lattanzi, P
Lowenberg-DeBoer, J
Lebeau, F
Li, H
Lizarazo Salcedo, I.A
Liu, H
Linz, A
Add filter to result:
Authors
Lee, W
Wang, K
Li, H
Ehsani, R
Yang, C
Ruckelshausen, A
Alheit, K.V
Busemeyer, L
Klose, R
Linz, A
Moeller, K
Rahe, F
Thiel, M
Trautz, D
Weiss, U
Hertzberg, J
Ruckelshausen, A
Wunder, E
Linz, A
Erickson, B.J
Lowenberg-DeBoer, J
Plum, J
Quoitin, B
Dufrasne, I
Mahmoudi, S
Lebeau, F
Fulton, J.P
Shearer, S.A
Gauci, A
Lindsey, A
Barker, D
Hawkins, E
Maja, J.J
Abenina, M
Cutulle, M
Melgar, J
Liu, H
Canavari, M
Lattanzi, P
Vitali, G
Emmi, L
Ferreyra, R
Lehmann, J
Lowenberg-DeBoer, J
Al Amin, A
Lowenberg-DeBoer, J
Franklin, K.F
Dickin, E
Monaghan, J
Behrendt, K
McFadden, J
Erickson, B
Lowenberg-DeBoer, J
Milics, G
Maritan, E
Behrendt, K
Lowenberg-DeBoer, J
Morgan, S
Rutter, M.S
Rozenstein, O
Cohen, Y
Alchanatis , V
Behrendt, K
Bonfil, D.J
Eshel, G
Harari, A
Harris, W.E
Klapp, I
Laor, Y
Linker, R
Paz-Kagan, T
Peets, S
Rutter, M.S
Salzer, Y
Lowenberg-DeBoer, J
Rubaino Sosa, S.A
Cristancho Rojas, O.Y
Leon Rueda, W.A
Montero Pinilla, O.G
Roa Bello, J.C
Lizarazo Salcedo, I.A
Martinez Martinez, L.J
Topics
Machine Vision / Multispectral & Hyperspectral Imaging Applications to Precision Agriculture
Sensor Application in Managing In-season Crop Variability
Precision Horticulture
Factors Driving Adoption
Farm Animals Health and Welfare Monitoring
On Farm Experimentation with Site-Specific Technologies
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Precision Agriculture and Global Food Security
Profitability and Success Stories in Precision Agriculture
Drivers and Barriers to Adoption of Precision Ag Technologies or Digital Agriculture
Site-Specific Pasture Management
Scouting and Field Data collection with Unmanned Aerial Systems
Type
Poster
Oral
Year
2012
2010
2014
2022
2024
Home » Authors » Results

Authors

Filter results14 paper(s) found.

1. Sensor And System Technology For Individual Plant Crop Scouting

Sensor and system technologies are key components for automatic treatment of individual plants as well as for plant phenotyping in field trials. Based on experiences in research and application of sensors in agriculture the authors have developed phenotyping platforms for field applications including sensors, system and software development and application-specific mountings.   Sensor and data fusion have a high potential by compensating varying selectivities... A. Ruckelshausen, K.V. Alheit, L. Busemeyer, R. Klose, A. Linz, K. Moeller, F. Rahe, M. Thiel, D. Trautz, U. Weiss

2. Spectral Angle Mapper (SAM) Based Citrus Greening Disease Detection Using Airborne Hyperspectral Imaging

Over the past two decades, hyperspectral (HS) imaging has provided remarkable performance in ground objects classification and disease identification, due to its high spectral resolution. In this paper, a novel method named ‘extended spectral angle mapping (ESAM)’ is proposed to detect citrus greening disease (Huanglongbing or HLB), which is a destructive disease of citrus. Firstly, Savitzky-Golay smoothing filter was applied to the raw image to remove spectral noise within the data,... W. Lee, K. Wang, H. Li, R. Ehsani, C. Yang

3. Autonomous Service Robots For Orchards And Vineyards: 3D Simulation Environment Of Multi Sensor-Based Navigation And Applications

In order to fulfill economical as well as ecological boundary conditions information technologies and sensor are increasingly gaining importance in horticulture.  In combination with the reduced availability of human workers automation technologies thus play a key role in the international competition in vinicultures and orchards and have the potential to reduce the costs as well as environmental impacts.   The authors are working in the... J. Hertzberg, A. Ruckelshausen, E. Wunder, A. Linz

4. Survey Shows Specialty and Commodity Crop Retailers Use Precision Agriculture Differently

The 2021 CropLife-Purdue Survey of precision agricultural practices by US agricultural input dealers serving the American grain and oilseed sector shows that most of them use GPS guidance and related technologies like sprayer boom control, most provide variable rate fertilizer services, and the majority say that fertilizer decisions are influenced by grower data. In contrast, dealers serving horticultural and specialty crop farms indicate comparatively modest adoption of many precision agriculture... B.J. Erickson, J. Lowenberg-deboer

5. Use of Watering Hole Data As a Decision Support Tool for the Management of a Grazing Herd of Cattle

Establish grazing practices would improve the welfare of the animals, allowing them to express more natural behaviours. However, free-range reduces the ability to monitor the animals, thus increase the time needed to intervene in the event of a health problem. To ease the adoption of grazing, farmer would benefit from autonomously collected indicators at pasture that identify abnormal behaviours possibly related to a health problem in a bovine. These indicators must be individualised and collected... J. Plum, B. Quoitin, I. Dufrasne, S. Mahmoudi, F. Lebeau

6. Limitations of Yield Monitor Data to Support Field-scale Research

Precision agriculture adoption on farms continues to grow globally on farms.  Today, yield monitors have become standard technologies on grain, cotton and sugarcane harvesters.  In recent years, we have seen industry and even academics leveraging the adoption of precision agriculture technologies to conduct field-scale, on-farm research.  Industry has been a primary driver of the increase in on-farm research globally through the development of software to support on-farm research. ... J.P. Fulton, S.A. Shearer, A. Gauci, A. Lindsey, D. Barker, E. Hawkins

7. Snap-shot Hyperspectral Camera for Potassium Prediction of Peach Trees Using Multivariate Analysis

Hyperspectral imaging (HSI) is an emerging technology being utilized in agriculture. This system could be used to monitor the overall health of plants or pest disease detection. As sensing technology advances, measuring nutrient levels and disease detection also progresses. This study aimed to predict the levels of potassium (K) content in peach leaves with the new snapshot hyperspectral camera. The study was conducted at the Clemson University Musser Fruit Research Farm (Seneca, SC, USA, 34.61... J.J. Maja, M. Abenina, M. Cutulle, J. Melgar, H. Liu

8. Robot Safety Issues in Field Crops - EU Regulatory Issues and Technical Aspects

The use of robots in Precision Agriculture is becoming of great interest, but they introduce a new kind of risk in the field due to their self-acting and self-driving capability. Safety issues appear with respect to people working in the same field in human-robot collaboration (HRC) framework or to the accidental presence of humans or animals. A robot out of control may also invade other areas causing unpredictable harm and damage. Currently, the safety of highly automated agricultural... M. Canavari, P. Lattanzi, G. Vitali, L. Emmi

9. The ISO Strategic Advisory Group for Smart Farming: a Multi-pronged Opportunity for Greater Global Interoperability

Agriculture is becoming increasingly complex and producers must secure their profitability, sustainability, and freedom to operate under a progressively more challenging set of constraints such as climate change, regulatory pressure, changes in consumer preferences, increasing cost of inputs, and commodity price volatility. We have not, however, yet reached the level of data interoperability required for a truly "smart" farming that can tackle the aforementioned problems... R. Ferreyra, J. Lehmann

10. Profitability of Regenerative Cropping with Autonomous Machines: an Ex-ante Assessment of a British Crop-livestock Farm

Farmers, agroecological innovators and research have suggested mixed cropping as a way to promote soil health. Mixing areas of different crops in the same field is another form of precision agriculture's spatial and temporal management. The simplest form of mixed cropping is strip cropping. In conventional mechanized farming use of mixed cropping practices (i.e., strip cropping, pixel cropping) is limited by labour availability, rising wage rates, and management complexity. Regenerative agriculture... A. Al amin, J. Lowenberg-deboer, K.F. Franklin, E. Dickin, J. Monaghan, K. Behrendt

11. Global Adoption of Precision Agriculture: an Update on Trends and Emerging Technologies

The adoption of precision agriculture (PA) has been mixed. Some technologies (e.g., Global Navigation Satellite System (GNSS) guidance) have been adopted rapidly worldwide wherever there is mechanized agriculture. Adoption of some of the original PA technologies introduced in the 1990s has been modest almost everywhere (e.g., variable rate fertilizer). New and more advanced technologies based on robotics, uncrewed aerial vehicles (UAVs), machine vision, co-robotic automation, and artificial intelligence... J. Mcfadden, B. Erickson, J. Lowenberg-deboer, G. Milics

12. A Multi-objective Optimisation Analysis of Virtual Fencing in Precision Grazing

Virtual fencing is a precision livestock farming tool consisting of invisible boundaries created via Global Navigation Satellite Systems (GNSS) and managed remotely and in real time by app-based technology. Grazing livestock are equipped with battery-powered collars capable of delivering audio or vibration cues and possibly electric shocks when approaching or crossing an invisible boundary. Virtual fencing makes precision grazing possible without the need for physical fences. This technology originated... E. Maritan, K. Behrendt, J. Lowenberg-deboer, S. Morgan, M.S. Rutter

13. Data-driven Agriculture and Sustainable Farming: Friends or Foes?

Sustainability in our food and fiber agriculture systems is inherently knowledge intensive.  It is more likely to be achieved by using all the knowledge, technology, and resources available, including data-driven agricultural technology and precision agriculture methods, than by relying entirely on human powers of observation, analysis, and memory following practical experience.  Data collected by sensors and digested by artificial intelligence (AI) can help farmers learn about synergies... O. Rozenstein, Y. Cohen, V. Alchanatis , K. Behrendt, D.J. Bonfil, G. Eshel, A. Harari, W.E. Harris, I. Klapp, Y. Laor, R. Linker, T. Paz-kagan, S. Peets, M.S. Rutter, Y. Salzer, J. Lowenberg-deboer

14. Spectral Response of Six Treatments of Soil Fertilization in Potato (Solanum tuberosum L.) Var. Diacol Capiro with UAS

In Colombia, potato cultivation occupies the third place among the transient crops in the country, covering approximately 160,000 hectares. It holds the first place in terms of production value, reaching US $500 million, and ranks as the second crop with the highest demand for fertilizers, constituting 20% of production costs. The departments of Cundinamarca, Boyacá, Nariño, and Antioquia are the primary potato producers, accounting for 87.8% of the total production. Traditional... S.A. Rubaino sosa, O.Y. Cristancho rojas, W.A. Leon rueda, O.G. Montero pinilla, J.C. Roa bello, I.A. Lizarazo salcedo