Proceedings
Authors
| Filter results13 paper(s) found. |
|---|
1. Using GPS-RTK In Crop Variety And Hybrid EvaluationsThe traditional methods used by many to conduct research in crop variety and hybrid evaluations is to blank plant the area, flag the area, or use a physical marker. All of these have disadvantages. In blank planting it may be difficult to plant exactly in the same rows, and can dry the soil and affect seed germination if soil water is limited. Blank planting also destroys crop residues and with skip-row residues are destroyed in the unplanted rows.This method is used for many plots in cooperator’s... R.N. Klein, J.A. Golus |
2. Effect Of Sub-surface Drip Irrigation And Shade On Soil Moisture Uniformity In Residential TurfSub-surface irrigation in turf has advantages over traditional sprinkler systems. Evapotranspiration is reduced and water applied below the root zone promotes deeper root growth. Auditing such applications requires measurement of root-zone soil moisture. Data was taken in 2008 and 2009 on a private lawn in northern California that had just been rebuilt to include both sub-surface drip and overhead spray irrigation systems. A portable wave reflectometer was used to take geo-referenced soil moisture... D. Kieffer |
3. Investigation Of Crop Varieties At Different Growth Stages Using Optical Sensor DataCotton, soybean and sorghum are economically important crops in Texas. Knowing the growing status of crops at different stages of growth is crucial to apply site-specific management and increase crop yield for farmers. Field experiments were initiated to measure cotton, soybean and sorghum plants growth status and spatial variability through the whole growing cycle. A ground-based active optical sensor, Greenseeker®, was used to collect the Normalized Difference Vegetation Index (NDVI) data... H. Zhang, Y. Lan, J. Westbrook, C. Suh, C. Hoffmann, R. Lacey |
4. Multisensor Data Fusion Of Remotely Sensed Imagery For Crop Field MappingA wide variety of remote sensing data from airborne hyperspectral and multispectral images is available for site-specific management in agricultural application and production. Aerial imaging system may offer less expensive and high spatial resolution imagery with Near Infra-Red, Red, Green and Blue spectral wavebands. Hyperspectral sensor provides hundreds of spectral bands. Multisensor data fusion provides an effective paradigm for remote sensing applications by synthesizing... Y. Lan, H. Zhang, C. Yang, D. Martin, R. Lacey, Y. Huang, W.C. Hoffmann, P. Moulton |
5. Remote NIR-Sensor Fusion with Weather Data for Improved Prediction of Wheat Yield ModelsPrediction models for grain yield based on remote sensing data are commonly shown to perform reasonably well for one single cropping season. The model performances often drop, however, when data from more years is included. This may be caused by biased data, resulting from diverging growth conditions from year to year, which affects... T. Isaksson, A. Korsaeth, S. Øvergaard |
6. Ground-Based Spectral Reflectance Measurements for Evaluating the Efficacy of Aerially-Applied Glyphosate TreatmentsAerial application of herbicides is a common tool in agricultural field management. The objective of this study was to evaluate the efficacy of glyphosate herbicide applied aerially with both conventional and emerging aerial nozzle technologies. A Texas A&M University Plantation weed field was... Y. Lan, H. Zhang |
7. Differentiation of Cotton from Other Crops at Different Growth Stages Using Spectral Properties and Discriminant AnalysisTimely detection and remediation of volunteer cotton plants in both cultivated and non-cultivated habitats is critical for completing boll weevil eradication in Central and South Texas. However, timely detection of cotton plants... H. Zhang, Y. Lan |
8. Proximal Sensing Tools to Estimate Pasture Quality Parameters.To date systems for estimating pasture quality have relied on destructive sampling with measurement completed in a laboratory which was very time consuming and expensive. Results were often not received until after the pasture was grazed which defeated the point of the measurement, as farmers required the information to make decisions about grazing strategies to effectively... R. Pullanagari, I. Yule, M. Tuohy, M. Hedley, W. King, . Dynes |
9. Precision Nutrient Management For Enhancing The Yield Of Groundnut In Peninsular IndiaGroundnut is an important oil seed crop grown in an area of around 8 lakh hectares in Karnataka state of India under rainfed conditions. In these situations farmers applied inadequate fertilizer without knowing the initial nutrient status of the soil which resulted in low nutrient use efficiency that intern lead to low productivity of groundnut in these areas. Soil fertility deterioration due to... M. Giriyappa, T. Sheshadri, D. Hanumanthappa, M. Shankar, S.B. Salimath, T. Rudramuni, N. Raju, N. Devakumar, G. Mallikaarjuna, M.T. Malagi, S. Jangandi |
10. Precision Agriculture Research Infrastructure for Sustainable FarmingPrecision agriculture is an emerging area at the intersection of engineering and agriculture, with the goal of intelligently managing crops at a microscale to maximize yield while minimizing necessary resource. Achieving these goals requires sensors and systems with predictive models to constantly monitor crop and environment status. Large datasets from various sensors are critical in developing predictive models which can optimally manage necessary resources. Initial experiments at University... C. Lai, C. Min, R. Chiang, A. Hafferman, S. Morgan |
11. Through the Grass Ceiling: Using Multiple Data Sources on Intra-Field Variability to Reset Expectations of Pasture Production and Farm ProfitabilityIntra-field variability has received much attention in arable and horticultural contexts. It has resulted in increased profitability as well as reduced environmental footprint. However, in a pastoral context, the value of understanding intra-field variability has not been widely appreciated. In this programme, we used available technologies to develop multiple data layers on multiple fields within a dairy farm. This farm was selected as it was already performing at a high level, with well-developed... W. King, R. Dynes, S. Laurenson, S. Zydenbos, R. Macauliffe, A. Taylor, M. Manning, A. Roberts, M. White |
12. Toward Smart Soybean Variety Selection Using UAV-based Imagery and Machine LearningThe efficiency of crop breeding programs is evaluated by the genetic gain of a primary trait of interest, e.g., yield and resilience to stress, achieved in one year through artificial selection of advanced breeding materials. Conventional breeding programs select superior genotypes using the primary trait (yield) based on combine harvesters, which is labor-intensive and often unfeasible for single-row progeny trials due to their large population, complex genetic behavior, and high genotype-environment... J. Zhou, J. Zhou |
13. Develop Portable Near-infrared Sensing Devices for Rapid Seed Moisture Measuring in Grass Seed CropsTo maximize harvest efficiency and seed yield, it is essential to harvest seed crops at appropriate timing. Seed moisture content (SMC) is the most reliable indicator of seed maturity and harvest timing in grass seed crops. Currently, to determine the SMC of a particular field, a minimum sample of 30 to 50 seed heads has to be collected from representative areas of the field and measured by wet and dry weights to calculate the SMC. The seeds must be either oven dried, microwave dried, or placed... J. Zhou |