Proceedings
Authors
| Filter results5 paper(s) found. |
|---|
1. Inversion Of Vertical Distribution Of Chlorophyll Concentration By Canopy Reflectance Spectrum In Winter WheatThe objective of this study was to investigate the inversion of foliage chlorophyll concentration(Chl) vertical-layer distribution by bidirectional reflectance difference function (BRDF) data, so as to provide guidance on the application of fertilizer. The ratio of transformed chlorophyll absorption reflectance index (TCARI) to optimized soil adjusted vegetation index (OSAVI) was named as canopy chlorophyll inversion index (CCII) in... W. Huang, C. Zhao |
2. Current Status and Future Directions of Precision Aerial Application For Site-Specific Crop Management In The USAPrecision agriculture includes different technologies that allow agricultural professional to use information management tools to optimize agriculture production. The new technologies allow aerial application applicators to improve application accuracy and efficiency, which saves time and money for the farmer and the pilot. The USDA-ARS-Aerial Application Technology group has an active research component in precision... W.C. Hoffmann, Y. Lan |
3. Winter Wheat Growth Uniformity Monitoring Through Remote Sensed Images... X. Song, C. Zhao, L. Chen, W. Huang, B. Cui |
4. Prototype Unmanned Aerial Sprayer for Plant Protection in Agricultural and Horticultural CropsAerial application of pesticides has the potential to reduce the amount of pesticides required as chemicals are applied where needed. A prototype Unmanned Aerial Sprayer with a payload of 20 kg; a spraying rate of 6 liters per minute; a spraying swathe of 3 meters, coverage rate of 2 to 4 meters per second and 10 minutes of flight time was built using state of the art technologies. The project is a joint development by University of Agricultural Sciences, Dharwad, KLE Technological University,... S. G, D.P. Biradar, B.L. Desai, V.C. Patil, P. Patil, V.B. Nargund, V. Desai, W. John, S.M. Channangi, V. Tulasigeri |
5. Leveraging UAV-based Hyperspectral Data and Machine Learning Techniques for the Detection of Powderly Mildew in VineyardsThis paper presents the development and validation of machine learning models for the detection of powdery mildew in vineyards. The models are trained and validated using custom datasets obtained from unmanned aerial vehicles (UAVs) equipped with a hyperspectral sensor that can collect images in visible/near-infrared (VNIR) and shortwave infrared (SWIR) wavelengths. The dataset consists of the images of vineyards with marked regions for powdery mildew, meticulously annotated using LabelImg. ... S. Bhandari, M. Acosta, C. Cordova gonzalez, A. Raheja, A. Sherafat |