Proceedings

Find matching any: Reset
Drone Spraying
Profitability and Success Stories in Precision Agriculture
Land Improvement and Conservation Practices
Country Representative Report
Decision Support Systems
Remote Sensing Applications in Precision Agriculture
Engineering Technologies and Advances
Profitability, Sustainability and Adoption
ISPA Community: Economics
Add filter to result:
Authors
Aasen, H
Abney, M
Achigan-Dako, E
Adedeji, O
Adedeji, O
Admasu, W.A
Al-Shammari, D
Alchanatis, V
Amri, M
Ault, A
Avanzi, J.C
Baio, F
Baio, F
Bajwa, S
Balafoutis, A
Balboa, G
Balboa, G
Balmos, A
Bareth, G
Bareth, G
Barros, M.F
Bede, L
Bedwell, E
Been, T
Behrendt, K
Benke, S
Bishop, T
Blanche, D
Bolten, A
Booij, J.A
Boote, K
Borghi, E
Bortolon, E.S
Bortolon, L
Brand, H
Bruce, A.E
Brungardt, J.J
Buckmaster, D
Bui, T
Burlai, T
Burns, D
Byers, C
Byers, C
Byers, C
Byers, C
CARCEDO, A
Caicedo, J.H
Cammarano, D
Canata, T.F
Cano, P.B
Cao, Q
Celades, J.A
Cerri, D.G
Chavan, H
Chen, L
Chen, L
Chen, Y
Chen, Y
Chowdury, M
Ciampitti, I
Ciampitti, I
Ciampitti, I
Ciampitti, I
Cisneros, M
Clarke, A
Coble, K
Coen, T
Cointault, F
Colaço, A.F
Congona Benavente, J
Connor, J
Correndo, A
Costa, O.P
Cranfield, G
Cugnasca, C.E
Cushnahan, T
Davis, G
De Baerdemaeker, J
Denton, A.M
Dhoubhadel, S
Dillon, C
Dornbusch, T
Drummond, S.T
Dubois, J
Duff, H
EMİNOĞLU, B.M
Emmons, A
English, B.C
Erdle, K
Esau, T.J
Fassinou Hotegni, N
Felipe dos Santos, A
Ferguson, A
Ferguson, A
Ferraz, C
Filippi, P
Fiorio, P.R
Fountain, J
Fountain, J
Fountas, S
France, W
Franzen, D.W
Franzen, J
Frazier, R
Freitas, A.A
Frimpong, K.A
Fritz, B.K
Frotscher, K.J
Fulton, J.P
Fulton, J.P
Fulton, J.P
Fusamura, R
Gan, H
Gandorfer, M
Gandorfer, M
García, C.E
Garg, A
Ge, Y
Gerighausen, H
Ghimire, B
Ghimire, B
Gimenez, V
Gnyp, M.L
Gnyp, M.L
Gomez, F
Gonzalez, J
Goorahoo, D
Grafton, M.C
Griffin, T
Griffin, T
Griffin, T.W
Griffin, T.W
Guo, J
Guo, J
Guo, W
Guo, W
Gérard, B
Haapala, H.E
Hambly, H
Han, Y.J
Hand, L
Happich, G
Harms, H
Heil, K
Hernandez, C
Hernandez, C
Hijazi, B
Hill, C
Hoffmann, W.C
Hoogenboom, G
Howatt, K
Huang, J
Huang, S
Huang, Y
Huang, Y
Hunt, E
Igwe, K.E
Inamasu, R.Y
Inácio, F.D
Irwin, M.E
Isakeit, T
Islam, M
Jansen, M
Jasper, J
Jhala, A
Joalland, S
Johnson, R.M
KOJIMA, Y
Kaho, T
Kaiser, D
Karangwa, A
Karatay, Y
Karn, R
Karn, R
Kasimati, A
Kelley, J
Kemerait, R.C
Kemerait, R.C
Kemerait, R.C
Kempenaar, C
Kereszturi, G
Kessel, G.J
Khakbazan, M
Khalilian, A
Khosla, R
Khosla, R
Khosla, R
Kichler, J
Kitchen, N.R
Klein, R.N
Knezevic, S
Kodaira, M
Krogmeier, J
Kruse, D
Kukal, S
Kukal, S
Kulmany, I.M
Kyveryga, P.M
Laacouri, A
Lacasa, J
Lacerda, L
Lacerda, L
Lacerda, L
Lambert, D.M
Lan, Y
Lang, T
Larbi, P.A
Larson, J.A
Layton, A
Le Roux, M
Lee, W
Leininger, A
Lenz-Wiedemann, V
Lesueur, C
Li, X
Lilienthal, H
Liu, J
Longchamps, L
Longchamps, L
Lovejoy, K
Luchiari Junior, A
Luck, J.D
Luck, J.D
Luck, J.D
Luck, J.D
Magalh, P.S
Magalhaes Cisdeli, P
Maharlooei, M
Maja, J.M
Maktabi, S
Maktabi, S
Mandal, D
Mangus, D.L
Manyatsi, A
Martello, M
Martinsson, J
Massey, R.E
Maxwell, B
McAvoy, T
McDonald, T.P
McDonald, T.P
McFadden, J
McGraw, T
McPherson, T
McVeagh, P.J
McVeagh, P.J
Meena, R
Meena, R.K
Meena, R.K
Meyer-Aurich, A
Miao, Y
Michiels, P
Mishra, A.K
Molendijk, L.P
Molin, J.P
Mommen, D
Mora, H
Morimoto, E
Morris, E
Moulin, A
Moulton, H
Mulla, D
Mullenix, D
Mullenix, D
Neils, W
Nichols, R.L
Nocera Santiago, G.N
Noel, S
Nowatzki, J
Nowatzki, J.F
Odvody, G.N
Ohaba, M
Oliveira, R
Onyekwelu, I
Orellana, M.C
Orlando Costa Barboza, T
Ortega, A.F
Ortega, R.A
Ortiz, B.V
Ortiz-Monasterio, I
Overstreet, D
Paindavoine, M
Pandit, M
Panitzki, M
Patto Pacheco, E
Paudel, K.P
Paulus, S
Payero, J.O
Pearson, R
Pecze, R
Peduzzi, A
Pellegrini, P
Pennington, D
Percival, D.C
Phillips, S
Piikki, K
Pilcon, C
Pilcon, C
Pimstein, A
Pitla, S
Poncet, A
Prasad, V
Prasad, V
Price, R
Pritsolas, J
Privette, C.V
Psiroukis, V
Pullanagari, R.R
Puntel, L.A
Purcell, L
Qiao, X
Rains, G
Rattalino, J
Read, S.M
Reddy, K
Reusch, S
Ritchie, G
Roberts, R.K
Roberts, T
Rodrigues Jr., F.A
Rondon, S.I
Rosburg, A
Rutter, M.S
SANAEI, A
SEYHAN, G.T
SONODA, M
Saeys, W
Sampson, T
Sapkota, A
Schacht, R
Scharf, P
Schleicher, S
Schnug, E
Schulte-Ostermann, S
Schulthess, U
Schumann, A.W
Seepersad, G
Seepersad, S
Segarra, E
Sharda, A
Sharda, A
Sharda, A
Sharda, V
Shearer, S.A
Shearer, S.A
Shearer, S.A
Shi, Y
Shibusawa, S
Shibusawa, S
Shibusawa, S
Shirzadi, A
Shockley, J.M
Siegfried, J
Silva, J.E
Silva, W
Sivarajan, S
Smith, L
Snider, J
Stadig, H
Steele, K
Stenberg, M
Stombaugh, T
Sudduth, K.A
Sunley, S
Sysskind, M
Sysskind, M
Söderström, M
TALEBPOUR, B
Takahashi, T
Taylor, J
Thomas, A
Thomasson, J.A
Thompson, N.M
Thomson, S.J
Thomson, S.J
Tilly, N
Toledo, F.H
Trevisan, R.G
Turner, R.W
TÜRKER, U
Uyar, H
Vanacht, M
Vangeyte, J
Varela, S
Varela, S
Velandia, M
Vellidis, G
Vellidis, G
Vellidis, G
Verdi, A.K
Verhoff, K
Viator, R.P
Virk, S
Virk, S
Virk, S
Virk, S
Vitali, G.-
Vitantonio, L
Vona, V
Wagner, P
Wagner, P
Wang, C
Wang, Y
Wang, Y
Warren, J.G
Warren, J.G
White, M
Williams, E
Willis, L.A
Wilson, R
Xie, R
Xu, G
Yang, C
Yang, Q
Yang, Q
Yao, Y
Yeager, E.A
Yegul, U
Yost, M.A
Yu, Z
Yuan, F
Yule, I.J
Yule, I.J
Zaman, Q
Zamzow, M
Zamzow, M
Zandonadi, R.S
Zarco-Tejada, P.J
Zhang, R
Zhang, R
Zhang, Y
Zhang, Y
Zhao, T
Zhao, T
Zillmann, E
Zur, Y
hassanijalilian, O
van Evert, F.K
ÇOLAK, A
Topics
Engineering Technologies and Advances
Remote Sensing Applications in Precision Agriculture
Decision Support Systems
Country Representative Report
Profitability and Success Stories in Precision Agriculture
Profitability, Sustainability and Adoption
Drone Spraying
Land Improvement and Conservation Practices
ISPA Community: Economics
Type
Poster
Oral
Year
2010
2016
2024
2018
2012
2022
Home » Topics » Results

Topics

Filter results107 paper(s) found.

1. Performance Evaluation Of A Prototype Variable Rate Sprayer For Spot- Application Of Agrochemicals In Wild Blueberry Fields

  Wild blueberry yields are highly dependent on agrochemicals for adequate weed control. The excessive use of agrochemicals with uniform application in significant bare spots and plant areas has resulted in increased cost of production. A cost-effective automated prototype variable rate (VR) sprayer was developed for spot-application (SA) of agrochemicals in a specific section of the sprayer boom where the weeds have been detected. The weed patches were mapped with an RTK-... Q. Zaman, A.W. Schumann, D.C. Percival, T.J. Esau, S.M. Read

2. Development Of Unmanned Aerial Vehicles For Site-specific Crop Production Management

... Y. Huang, W.C. Hoffmann, Y. Lan, S.J. Thomson, B.K. Fritz

3. Optical Based Sugarcane Yield Monitors

Several different optical sensors were investigated to detect sugarcane yield on a billet type sugarcane harvester. These sensors included an over-head optical sensor and a below-the-conveyor sensor. Both sensors indicated mass flow rate from a volume measurement of the cane on the conveyor slats. Both systems gave good results with linear line calibration equations and adjusted R-square values from 0.96 to 0.97. Weight wagon weights in the 0.6 to 1.6 metric ton range were estimated to 7.5% o... R. Price, R.M. Johnson, R.P. Viator

4. On-the-go Condition Mapping For Harvesting Machinery

In recent years control systems have been used to alleviate the task of harvesting machinery operators. Automation allows the operator to spend more time on other tasks such as coordinating transport. Moreover, such control systems guarantee constant performance throughout the day whereas an operator gets tired. The perfect control system anticipates on the harvest condition, just like an experienced operator would. The operator makes a visual assessment of the condition in terms of... T. Coen, J. De baerdemaeker, W. Saeys

5. Study On Application Of Wireless Sensor Networks For Precision Agriculture

  Abstract: The use of sensor network to achieve soil moisture real-time detection can provide the decision-making basis for precision agriculture. In this... G. Xu, L. Chen, R. Zhang, J. Guo, Y. Wang

6. Spatial Modelling Of Agricultural Crops For Parallel Loading Operations

There is a trend in agricultural engineering towards high-performance harvesting machines with growing operating width and throughput. As much as performance and throughput are rising, the transportation units are characterized by increasing transportation volume. If harvesting and transport are combined in parallel operation (e.g. self-propelled forage harvester), the driver of the harvesting machine and the driver of the transport unit has to pay highest attention to the loading p... G. Happich, T. Lang, H. Harms

7. New Power-leds Based Illumination System For Fertilizer Granule Motion Estimation

Environmental problems have become more and more pressing in the past twenty years particularly with the fertilization operation, one main contributor to environmental imbalance. The understanding of the global centrifugal spreading process, most commonly used in Europe, can contribute to provide essential information about fertiliser granule deposition on the soil. This last one can be predicted using a ballistic flight model and several fertilizer characteristic’s determinat... F. Cointault, B. Hijazi, J. Dubois, J. Vangeyte, M. Paindavoine

8. Prediction Of Soil Moisture Content And Penetration Resistance Using Real-time Soil Meter

A real-time soil compaction meter that refers to the air injection subsoiler, is developed.  The final goal is to predict standarized soil compaction that is converted from soil moisture content, working resistance and working speed.  This experiment confirmed performance of predicting the soil moisture content and of measuring the working resistance was conducted.  The equipments of the meter are a working resistance measurement device received from the soil and a spectroscope... T. Kaho, M. Kodaira, S. Shibusawa

9. Precision Agricultural Branding Using Near-infrared Spectroscopy System

... Y. Kojima, S. Shibusawa, R. Fusamura, M. Sonoda

10. Developing Of A Monitoring System Of Cutting, Carrying, And Transportation Of Sugar Cane In Order To Manage Fleet

In the productive process for obtaining sugar cane products, the costs associated to the activities of harvesting (cut), carrying and transport (CCT), represent great part of the final cost of the product. In order to reduce this costs new technologies should be adopted in the agricultural mechanization using precision agriculture methods. The use of the information technology combined with the use of intelligent components can help to improve the performance of machines and equipments ... D.G. Cerri, P.S. Magalh

11. Evaluation And Contrast Of An Auto Guidance System Operating On A Sugar Cane Harvester In Brazil

The change on the harvesting sugar cane operation from the manual to mechanized cut  increased the amount of sugar cane cut by the mill per day, but the operation increased the cane loss, which is left behind on the field. The purpose of this work was to contrast the accuracy achiev... F. Baio

12. Computer Model By A Linear Program And Via Internet To Select Agricultural Mechanized Systems Based On The Smallest Operational Cost

Computer programs have been used to help the farmers on the fleet selection. However, these computing models are based on the previous choice of the mechanized system made by the user. On this context, the purpose of this work was to develop a free computer model by a linear program and via internet to select agricultural mechanized systems ... F. Baio, ,

13. An Inter-connection Model Between Standard Zigbee And Isobus Network (ISO11783)

The typical five-step cyclical process of precision agriculture includes soil and environment data collection, diagnosis, data analysis, precision field correction operation and evaluations. Usually, some steps are executed in field, others in the farm office and others in both. This can result in a complex system and consequently in waste of time and high cost in equipment, tools and workmanship. To simplify this process, the challenge is ... M.F. Barros, C.E. Cugnasca, J. Congona benavente

14. Tools For Evaluating The Potential Of Automatic Section Control

One of the newest technologies in precision agriculture is automatic section control on application equipment. This technology has tremendous potential to reduce wasted inputs, especially on irregularly shaped fields. Paybacks are not necessarily as great on rectangular fields. Producers considering adoption of the technology need to decide whether they will receive sufficient payback for their field shapes. They must also d... T. Stombaugh, R.S. Zandonadi, J.D. Luck, T.P. Mcdonald, T. Mcgraw

15. Rhizosphere Moisture Modulation By Water Head Precision Control

Abstract: A digital irrigation microcomputer system, designed to modulate rhizosphere moisture using ... M. Ohaba, S. Shibusawa

16. Application Rate Stability When Implementing Automatic Section Control Technology On Agricultural Sprayers

Automatic section control (on and off) technology of sprayer boom sections is an intelligent solution to maximize spray application efficiency during field operations. This technology can reduce over-application of products. Spray controllers available with this technology attempt to maintain the set target rate by adjusting system flow rate based on ground speed and application width.  Therefore, as sections are turned on or off, the flow regulating hardware must respond to m... A. Sharda, J.D. Luck, J.P. Fulton, S.A. Shearer, S.A. Shearer, D. Mullenix, M. Vanacht

17. Energy-efficient Wireless Sensor Network System For Soil Moisture Information Collecting

Collecting field soil moisture information is the foundation of auto-irrigation. This paper introduced a soil moisture information collecting system based on wireless sensor network (WSN) technology and with application background of automatic drip irrigation for cotton field. Firstly, application background was analyzed and application requirement was defined. The system worked together with a drip irrigation system in cotton field. After study, it was found that the output of soil moisture ... R. Zhang, L. Chen, J. Guo, J.G. Warren, J.G. Warren

18. Design And Construction Of A Computer Aided Control And Monitoring System For Greenhouses

ABSTRACT High expenditure is one the major disadvantages of using human or labor work force in agriculture division. Lack of accurate and precise processing, low working speed and the effect of physical tiredness on their efficiency are same other disadvantages. Using modern technology and replacing human work force with the automated mechanisms and instruments or intelligent machinery leads to the reduction of these expenses, enhancement of precision, accuracy and work speed ... A. Sanaei

19. Tip Flow Uniformity When Using Different Automatic Section Control Technologies During Field Operations

Automatic section control (ASC) technology provides a means to reduce double-coverage and application in unwanted areas thereby leading to input savings and improved environmental stewardship.  However, the impact of ASC on spray boom dynamics and tip flow uniformity are unknown. Therefore, a study was conducted to evaluate tip flow rate uniformity and control system response in maintaining target application rates during field operation. Field experiments were conducted using two self-p... A. Sharda, J.D. Luck, J.P. Fulton, S.A. Shearer, T.P. Mcdonald, D. Mullenix

20. Attaching Multiple Conductivity Meters To An Atv To Speed Up Precision Agriculture Soil Surveys

Ground conductivity meters are used in a number of precision agriculture applications, including the estimation of water content, nutrient levels, salinity and depth of topsoil. Typically the Geonics EM38 conductivity meter, and to a lesser extent the EM31, are used for soil surveys. Most conductivity surveys involve towing a ground conductivity meter behind an all-terrain vehicle (ATV). In some situations, such as rutted or sloping fields, it is preferable to mount the conductivity meter dir... E. Morris, A. Clarke, S. Sunley, C. Hill, G. Cranfield

21. Using Crop Budgeting Spreadsheets Can Assist Producers In Evaluating The Cost Effectiveness Of Adoption Of The Various Precision Agriculture Technologies

Producers asked the question which Precision Agriculture Technologies can be economical in my farming operation?  The use of easily modified crop budgets can help the producer evaluate the technologies and how they affect the profitability of one’s agricultural enterp... R.N. Klein, R. Wilson

22. On-Farm Trials Using Precision Ag in Northeast Louisiana

The availability of yield monitors and precision application equipment on producers’ farms have made it much easier for researchers to take the results from experiment station trials and apply them to producers’ fields.  Treatments/methods are applied in strips, by prescription, embedded plots or in combination.  Fields are divided into zones for analyzing the harvest yield data.  These can include soil type, soil Ec, or other criteria.  Treatments are analyzed... D. Burns, D. Overstreet, D. Kruse, R. Frazier, D. Blanche

23. The Use of Artificial Neuronal Networks to Generate Decision Rules for Site-Specific Nitrogen Fertilization

The basis for successful and sustainable agriculture is the utilization of adequate decision rules. When it comes to precision farming, these rules have to be applied to each sub-field, where they determine the actions to be taken. There are many possibilities for achieving site-specific information for a field (e.g. measuring the electrical conductivity of soil or yield mapping). But which rules should be used to link this information with profit maximization treatment recommendati... P. Wagner

24. The Adoption of Information Technologies and Subsequent Changes in Input Use in Cotton Production

The use of precision farming has become increasingly important in cotton production. It allows farmers to take advantage of knowledge about infield variability by applying expensive inputs at levels appropriate to crop needs. Essential to the success of the p... N.M. Thompson, J.A. Larson, B.C. English, D.M. Lambert, R.K. Roberts, M. Velandia, C. Wang

25. Adoption and Non-Adoption of Precision Farming Technologies by Cotton Farmers

  We used the 2009 Southern Cotton Precision Farming Survey data collected from farmers in twelve U.S. states (Alabama, Arkansas, Florida, Georgia, Louisiana, Missouri, Mississippi, North Carolina, South Carolina, Tennessee, Texas, and Virginia) to identify reasons on why some adopt and others do not adopt precision farming techniques. Those farmers who provided the cost as the reason for non-adoption are farmers characterized by lower educatio... A.K. Mishra, M. Pandit, K.P. Paudel, E. Segarra

26. Adoption and Tendencies of Precision Agriculture Technologies in the Tocantins State, Brazil

Although precision agriculture is widely used throughout Brazilian crop production, it has not been used to increase the efficiency use of agricultural inputs. Besides, technologies available have not bee... L. Bortolon, E. Borghi, A. Luchiari junior, E.S. Bortolon, A.A. Freitas, R.Y. Inamasu, J.C. Avanzi

27. Selection and Utility of Uncooled Thermal Cameras for Spatial Crop Temperature Measurement Within Precision Agriculture

Since previous research used local, single-point measurements to indicate crop water stress, thermography is presented as a technique capable of measuring spatial temperatures supporting its use for monitoring crop water stress. This study investigated measurement accuracy of uncooled thermal cameras under strict environmental conditions, developed hardware and software to implement uncooled thermal cameras and quantified intrinsic properties that impact measurement accuracy and repeatability... D.L. Mangus, A. Sharda

28. Spectral Vegetation Indices to Quantify In-field Soil Moisture Variability

Agriculture is the largest consumer of water globally. As pressure on available water resources increases, the need to exploit technology in order to produce more food with less water becomes crucial. The technological hardware requisite for precise water delivery methods such as variable rate irrigation is commercially available. Despite that, techniques to formulate a timely, accurate prescription for those systems are inadequate. Spectral vegetation indices, especially Normalized Differenc... J. Siegfried, R. Khosla, L. Longchamps

29. High Resolution Hyperspectral Imagery to Assess Wheat Grain Protein in a Farmer's Field

The agricultural research sector is working to develop new technologies and management knowledge to sustainably increase food productivity, to ensure global food security and decrease poverty. Wheat is one of the most important crops into this scenario, being among the three most important cereal commodities produced worldwide. Precision Agriculture (PA) and specially Remote Sensing (RS) technologies have become in the recent years more affordable which has improved the availability and flexi... F.A. Rodrigues jr., I. Ortiz-monasterio, P.J. Zarco-tejada, F.H. Toledo, U. Schulthess, B. Gérard

30. Spatial-temporal Evaluation of Plant Phenotypic Traits Via Imagery Collected by Unmanned Aerial Systems (UAS)

Unmanned aerial systems (UAS) and a stereovision approach were implemented to generate a 3D reconstruction of the top of the canopy. The 3D reconstruction or CSM (crop surface model) was utilized to evaluate biophysical parameters for both spatial- and temporal-scales. The main goal of the project was to evaluate sUAVs technology to assist plant height and biomass estimation. The main outcome of this process was to utilize CSMs to gain insights in the spatial-temporal dynamic of plants within... S. Varela, G. Balboa, V. Prasad, T. Griffin, I. Ciampitti, A. Ferguson

31. High Resolution 3D Hyperspectral Digital Surface Models from Lightweight UAV Snapshot Cameras – Potentials for Precision Agriculture Applications

Precision agriculture applications need timely information about the plant status to apply the right management at the right place and the right time. Additionally, high-resolution field phenotyping can support crop breeding by providing reliable information for crop rating. Flexible remote sensing systems like unmanned aerial vehicles (UAVs) can gather high-resolution information when and where needed. When combined with specialized sensors they become powerful sensing systems. Hyp... H. Aasen

32. Detecting Nitrogen Variability at Early Growth Stages of Wheat by Active Fluorescence and NDVI

Low efficiency in the use of nitrogen fertilizer, has been reported around the world which often times result in high production costs and environmental damage. Today, unmanned aerial vehicles (UAV) cameras are being used to obtain conditions of crops, and can cover large areas in a short time. The objectives of this study were (i) to investigate N-variability in wheat at early growth stages using induced fluorescence indices, NDVI measured by active sensor and NDVI obtained by digital i... E. Patto pacheco, J. Liu, L. Longchamps, R. Khosla

33. Comparison Between Tractor-based and UAV-based Spectrometer Measurements in Winter Wheat

In-season variable rate nitrogen fertilizer application needs a fast and efficient determination of nitrogen status in crops. Common sensor-based monitoring of nitrogen status mainly relies on tractor mounted active or passive sensors. Over the last few years, researchers tested different sensors and indicated the potential of in-season monitoring of nitrogen status by unmanned aerial vehicles (UAVs) in various crops. However, the UAV-platforms and the available sensors are not yet accepted t... M. Gnyp, M. Panitzki, S. Reusch, J. Jasper, A. Bolten, G. Bareth

34. Measuring Pasture Mass and Quality Indices Over Time Using Proximal and Remote Sensors

Traditionally pasture has been measured or evaluated in terms of a dry matter yield estimate, which has no reference to other important quality factors. The work in this paper measures pasture growth rates on different slopes and aspects and pasture quality through nitrogen N% and metabolizable energy and ME concentration. It is known that permanent pasture species vary greatly in terms of quality and nutritional value through different stages of maturity. Pasture quality decreases as grass t... I.J. Yule, M.C. Grafton, L.A. Willis, P.J. Mcveagh

35. First Experiences with the European Remote Sensing Satellites Sentinel-1A/ -2A for Agricultural Research

The Copernicus program headed by the European Commission (EC) in partnership with the European Space Agency (ESA) will launch up to twelve satellites, the so called “Sentinels” for earth and environmental observations until 2020. Within this satellite fleet, the Sentinel-1 (microwave) and Sentinal-2 (optical) satellites deliver valuable information on agricultural crops. Due to their high temporal (5 to 6 days repeating time) and spatial (10 to 20 m) resolutions a continuous monit... H. Lilienthal, H. Gerighausen, E. Schnug

36. Planet Labs' Monitoring Solution in Support of Precision Agriculture Practices

Satellite imagery is particularly useful for efficiently monitoring very large areas and providing regular feedback on the status and productivity of agricultural fields. These data are now widely used in precision farming; however, many challenges to making optimal use of this technology remain, such as easy access to data, management and exploitation of large datasets with deep time series, and sharing of the data and derived analytics with users. Providing satellite imagery through a cloud... K.J. Frotscher, R. Schacht, L. Smith, E. Zillmann

37. Comparison Between High Resolution Spectral Indices and SPAD Meter Estimates of Nitrogen Deficiency in Corn

Low altitude remote sensing provides an ideal platform for monitoring time sensitive nitrogen status in crops. Research is needed however to understand the interaction between crop growth stage, spatial resolution and spectral indices derived from low altitude remote sensing. A TetraCam camera equipped with six bands including the red edge and near infrared (NIR) was used to investigate corn nitrogen dynamics. Remote sensing data were collected during the 2013 and 2014 growing seasons at four... D. Mulla, A. Laacouri, D. Kaiser

38. A Photogrammetry-based Image Registration Method for Multi-camera Systems

In precision agriculture, yield maps are important for farmers to make plans. Farmers will have a better management of the farm if early yield map can be created. In Florida, citrus is a very important agricultural product. To predict citrus production, fruit detection method has to be developed. Ideally, the earlier the prediction can be done the better management plan can be made. Thus, fruit detection before their mature stage is expected. This study aims to develop a thermal-visible camer... H. Gan, W. Lee, V. Alchanatis

39. Potential Improvement in Rice Nitrogen Status Monitoring Using Rapideye and Worldview-2 Satellite Remote Sensing

For in-season site-specific nitrogen (N) management of rice to be successful, it is crucially important to diagnose rice N status efficiently across large area in a timely fashion. Satellite remote sensing provides a promising technology for crop growth monitoring and precision management over large areas. The FORMOSAT-2 satellite remote sensing imageries with 4 wavebands have been used to estimate rice N status. The objective of this study was to evaluate the potential of using high spatial ... S. Huang, Y. Miao, F. Yuan, M.L. Gnyp, Y. Yao, Q. Cao, V. Lenz-wiedemann, G. Bareth

40. CropSAT - a Public Satellite-based Decision Support System for Variable-rate Nitrogen Fertilization in Scandinavia

CropSAT is a free-to-use web application for satellite-based production of variable-rate application (VRA) files of e.g. nitrogen (N) and fungicides currently available in Sweden and Denmark. Even in areas frequently covered by clouds, vegetation index maps from data derived from low-cost or freely available optical satellites can be used in practice as a cost-efficient tool in time-critical applications such as optimized nitrogen use. During the very cloudy year 2015, or more useable ima... M. Söderström, H. Stadig, J. Martinsson, M. Stenberg, K. Piikki

41. Measuring Height of Sugarcane Plants Through LiDAR Technology

Sugarcane (Saccharum spp.) has an important economic role in Brazilian agriculture, especially in São Paulo State. Variation in the volume of plants can be an indicative of biomass which, for sugarcane, strongly relates to the yield. Laser sensors, like LiDAR (Light Detection and Ranging), has been employed to estimate yield for corn, wheat and monitoring forests. The main advantage of using this type of sensor is the capability of real-time data acquisition in a non-destructive way, p... T.F. Canata, J.P. Molin, A.F. Colaço, R.G. Trevisan, P.R. Fiorio, M. Martello

42. Window-based Regression Analysis of Field Data

High-resolution satellite and areal imagery enables multi-scale analysis that has previously been impossible.  We consider the task of localized linear regression and show that window-based techniques can return results at different length scales with very high efficiency.  The ability of inspecting multiple length scales is important for distinguishing factors that vary over different length scales.  For example, variations in fertilization are expected to occur on shorter len... A.M. Denton, H. Chavan, D.W. Franzen, J.F. Nowatzki

43. Hyperspectral Imaging to Measure Pasture Nutrient Concentration and Other Quality Parameters

Managing pasture nutrient requirements on large hill country sheep and beef properties based on information from soil sampling is expensive because of the time and labor involved. High levels of error are also expected as these properties are often greatly variable and it is therefore extremely difficult to sample intensively enough to capture this variation. Extensive sampling was also not considered viable as there was no effective means of spreading fertilizer with a variable rate capabili... I.J. Yule, R.R. Pullanagari, G. Kereszturi, M.E. Irwin, P.J. Mcveagh, T. Cushnahan, M. White

44. Creating Prescription Maps from Historical Imagery for Site-specific Management of Cotton Root Rot

Cotton root rot, caused by the soilborne fungus Phymatotrichopsis omnivore, is a severe plant disease that has affected cotton production for over a century. Recent research found that a commercial fungicide, Topguard (flutriafol), was able to control this disease. As a result, Topguard Terra Fungicide, a new and more concentrated formulation developed specifically for this market was registered in 2015, so cotton producers can use this product to control the disease. Cotton root rot only inf... C. Yang, G.N. Odvody, J.A. Thomasson, T. Isakeit, R.L. Nichols

45. Retrieving Crops' Quantitative Biophysical Parameters Through a Newly Developed Multispectral Sensor for UAV Platforms

Today’s intensive agricultural production needs to increase its efficiency in order to keep its profitability in the current market of decreasing prices on one hand, and to reduce the environmental impact on the other. Crop growers are starting to adopt side dressing nitrogen fertilization as part of their fertilization programs, for which they need accurate information about biomass development and nitrogen condition in the crop. This information is usually acquired through ground samp... A. Pimstein, Y. Zur, M. Le roux

46. Development of Sensor Reflection Indices To Predict Yield And Protein Content Based On In-Season N Status

Environmental and economic demands make it necessary for farmers to adopt   management systems that improve Nitrogen Use Efficiency. The premium paid to producers has made farmers striving for maximum grain protein levels because protein is a very important quality component of grains and an important attribute in the market place. The protein content of wheat grains approximately ranges from 8 to 20%. The optimization of nitrogen (N) fertilization is the object of intense research ... U. Yegul, B. Talebpour, U. TÜrker, B.M. EmİnoĞlu, G.T. Seyhan, A. Çolak

47. Intuitive Image Analysing on Plant Data - High Throughput Plant Analysis with Lemnatec Image Processing

For digital plant phenotyping huge amounts of 2D images are acquired. This is known as one part of the phenotyping bottleneck. This bottleneck can be addressed by well-educated plant analysts, huge experience and an adapted analysis software. Automated tools that only cover specific parts of this analysis pipeline are provided. During the last years this could be changed by the image processing toolbox of LemnaTec GmbH. An automated and intuitive tool for the automated analysis of huge amount... S. Paulus, T. Dornbusch, M. Jansen

48. In Season Estimation of Barley Biomass with Plant Height Derived by Terrestrial Laser Scanning

The monitoring of plant development during the growing season is a fundamental base for site-specific crop management. In this regard, the amount of plant biomass at a specific phenological stage is an important parameter to evaluate the actual crop status. Since biomass is directly only determinable with destructive sampling, methods of recording other plant parameters, such as crop height or density, which are suitable for reliable estimations are increasingly researched. Over the past two ... N. Tilly

49. Spatial-temporal Evaluation of Plant Phenotypic Traits Via Imagery Collected by Unmanned Aerial Systems (UAS)

Unmanned aerial systems (UAS) and a stereovision approach were implemented to generate a 3D reconstruction of the top of the canopy. The 3D reconstruction or CSM (crop surface model) was utilized to evaluate biophysical parameters for both spatial- and temporal-scales. The main goal of the project was to evaluate sUAVs technology to assist plant height and biomass estimation. The main outcome of this process was to utilize CSMs to gain insights in the spatial-temporal dynamic of plants within... S. Varela, G. Balboa, V. Prasad, T. Griffin, I. Ciampitti, A. Ferguson

50. Assessing Soybean Injury from Dicamba Using RGB and CIR Images Acquired on Small UAVs

Dicamba is an herbicide used for postemegence control of several broadleaf weeds in corn, grain sorghum, small grains, and non-cropland. Currently, dicamba-tolerant (DT) soybean and cotton are under development, which provide new options to combat weeds resistant to glyphosate, the most widely used herbicide.  With the use of DT-trait cotton and soybean, off-target dicamba drift onto susceptible crops will become a concern. To relate soybean injury to different rates of dicamba applicati... Y. Huang, H. Brand, D. Pennington, K. Reddy, S.J. Thomson

51. Utilizing Space-based Technology for Cotton Irrigation Scheduling

Accurate soil moisture content measurements are vital to precision irrigation management. Electromagnetic sensors such as capacitance and time domain reflectometry have been widely used for measuring soil moisture content for decades. However, to estimate average soil moisture content over a large area, a number of ground-based in-situ sensors would need to be installed, which would be expensive and labor intensive. Remote sensing using the microwave spectrum (such as GPS signals) has been us... A. Khalilian, X. Qiao, J.O. Payero, J.M. Maja, C.V. Privette, Y.J. Han

52. Greenhouse Study to Identify Glyphosate-resistant Weeds Based on Canopy Temperature

Development of herbicide-resistant crops has resulted in significant positive changes to agronomic practices, while repeated and intensive use of herbicides with the same mechanisms of action has caused the development of herbicide-resistant weeds. As of 2015, 35 weed species are reported to be resistant to glyphosate worldwide. A greenhouse study was conducted to identify characteristics which can be helpful in field mapping of glyphosate resistant weeds by using UAV imagery. The experiment ... A. Shirzadi, M. Maharlooei, O. Hassanijalilian, S. Bajwa, K. Howatt, S. Sivarajan, J. Nowatzki

53. Challenges and Successes when Generating In-season Multi-temporal Calibrated Aerial Imagery

Digital aerial imagery (DAI) of the crop canopy collected by aircraft and unmanned aerial vehicles is the yardstick of precision agriculture.  However, the quantitative use of this imagery is often limited by its variable characteristics, low quality, and lack of radiometric calibration.  To increase the quality and utility of using DAI in crop management, it is important to evaluate and address these limitations of DAI.  Even though there have been improvements in spatial reso... P.M. Kyveryga, J. Pritsolas, J. Connor, R. Pearson

54. Detection of Potato Beetle Damage Using Remote Sensing from Small Unmanned Aircraft Systems

Remote sensing with small unmanned aircraft systems (sUAS) has potential applications in agriculture because low flight altitudes allow image acquisition at very high spatial resolution.  We set up experiments at the Oregon State University Hermiston Agricultural Research and Extension Center (HAREC) to assess advantages and disadvantages of sUAS for precision farming. In 2014, we conducted an experiment in irrigated potatoes with 4 levels of artificial infestation by Colorado Potato Bee... E. Hunt, S.I. Rondon, A.E. Bruce, R.W. Turner, J.J. Brungardt

55. Time Series Analysis of Vegetation Dynamics and Burn Scar Mapping at Smoky Hill Air National Guard Range, Kansas Using Moderate Resolution Satellite Imagery

Military installments are import assets for the proper training of armed forces. To ensure the continued viability of the training grounds, management practices need to be implemented to sustain the necessary environmental conditions for safe and effective training. This analysis uses satellite imagery over time to gain insight into vegetation conditions over a large military installment. MODIS imagery was collected multiple times a year for 11 years at Smoky Hill Air National Guard Range (Sm... E. Williams

56. Melon Classification and Segementation Using Low Cost Remote Sensing Data Drones

Object recognition represents currently one of the most developing and challenging areas of the Computer Vision. This work presents a systematic study of various relevant parameters and approaches allowing semi-automatic or automatic object detection, applied onto a study case of melons on the field to be counted. In addition it is of a cardinal interest to obtain the quantitative information about performance of the algorithm in terms of metrics the suitability whereof is determined by the f... T. Zhao, Y. Chen, J. Franzen, J. Gonzalez, Q. Yang

57. Aerial Photographs to Predict Yield Loss Due to N Deficiency in Corn

Nitrogen fertilizer is a crucial input for corn production, and in the U.S. more nitrogen is applied to corn than to all other crops combined.  In wet weather, nitrogen can be lost from soil by leaching and by denitrification.  Which process predominates depends largely on soil drainage.  Nitrogen deficiency in nearly any plant is expressed by a lighter green color of leaves than in nitrogen-sufficient plants.  Nitrogen deficiency in corn can be easily seen from the air.&n... P. Scharf

58. Almond Canopy Detection and Segmentation Using Remote Sensing Data Drones

The development of Unmanned Aerial System (UAV) makes it possible to take high resolution images of trees easily. These images could help better manage the orchard. However, more research is necessary to extract useful information from these images. For example, irrigation schedule and yield prediction both rely on accurate measurement of canopy size. In this paper, a workflow is proposed to count trees and measure the canopy size of each individual tree. The performances of three different m... T. Zhao, M. Cisneros, Y. Chen, Q. Yang, Y. Zhang

59. AGOC: Agriculture Operations Center

After another long day, the farmer sits down in front of a computer (wishing this time was instead spent on the front porch catching a last glimpse of the sunset), and reflects once again ...     What if   ...  I actually knew the health of 100% of my crops rather than what I know today. a mere 20%. What if   ...  there was an effective, simple way to synchronize crop scouting and crop imagery efforts. ... M. Zamzow, H. Moulton

60. The Agriculture Operations Center: the Answer to “What If...”

Can’t farming be simpler?  Yes…with an Agriculture Operations Center -- we call it the AGOC, and it’s the next big step for precision agriculture.  Leveraging decades of lessons from the US Air Force, the AGOC provides the ability to schedule, execute, collect, consolidate, and distribute all the support a farmer needs from satellites, piloted aircraft, unmanned aircraft, sensing, modeling, and analysis…all packaged into “one stop shopping.”&nbs... M. Zamzow

61. Precision Agriculture Techniques for Crop Management in Trinidad and Tobago: Methodology & Field Layout

Agriculture in Trinidad and Tobago has not advanced at the same rate at which new agricultural technology has been released. This has led to large-scale abandonment of crop lands as challenges posed by labor availability and their agronomic capability could not meet the technological demands for agricultural production, competitiveness and sustainability. There is an urgent need to develop technology-based agriculture models to meet the demands of a modern agricultural sector and to maintain ... G. Seepersad, T. Sampson, S. Seepersad, D. Goorahoo

62. An Economic Feasibility Assessment for Adoption of Autonomous Field Machinery in Row Crop Production

A multi-faceted whole farm planning model was developed to compare conventional and autonomous machinery for grain crop production.  Results suggested that autonomous machinery could be an economically viable alternative to conventional manned machinery if the establishment of intelligent controls was cost effective.  An increase in net returns of 22% over operating with conventional machinery was found.  This study also identified the break-even investment price for intelligen... J.M. Shockley, C. Dillon

63. A Long-Term Precision Agriculture System Maintains Profitability

After two decades of availability of grain yield-mapping technology, long-term trends in field-scale profitability for precision agriculture (PA) systems and conservation practices can now be assessed. Field-scale profitability of a conventional or ‘business-as-usual’ system with an annual corn (Zea mays L.)-soybean (Glycine max [L.]) rotation and annual tillage was assessed for 11 years on a 36-ha field in central Missouri during 1993 to 2003. Following this, a ‘precision a... M.A. Yost, N.R. Kitchen, K.A. Sudduth, S.T. Drummond, R.E. Massey

64. Yield Maps, Soil Maps, and Technical Efficiency: Evidence from U.S. Corn Fields

Yield maps and GPS-based soil maps have been increasingly used in U.S. agriculture but little research has explored the economic relationship between mapping technologies and agricultural productivity. Research on this relationship is lacking, perhaps because maps are information inputs that do not directly enter the production function in a comparable way to conventional inputs. A stochastic frontier model was used to evaluate one potential avenue through which mapping technologies may influ... J. Mcfadden, A. Rosburg

65. Evaluation of the Potential for Precision Agriculture and Soil Conservation at Farm and Watershed Scale: A Case Study

Precision agriculture and soil conservation have the potential to increase crop yield and economic return while reducing environmental impacts. Landform, spatial variability of soil processes, and temporal trends may affect crop N response and should be considered for precision agriculture. The objective of this research was to evaluate the viability of precision agriculture in improving N use efficiency and profitability at the farm and watershed level in western Canada. Two studies are desc... M. Khakbazan, A. Moulin, J. Huang, P. Michiels, R. Xie

66. Barriers to Adoption of Smart Farming Technologies in Germany

The number of smart farming technologies available on the market is growing rapidly. Recent surveys show that despite extensive research efforts and media coverage, adoption of smart farming technologies is still lower than expected in Germany. Media analysis, a multi stakeholder workshop, and the Adoption and Diffusion Outcome Prediction Tool (ADOPT) (Kuehne et al. 2017) were applied to analyze the underlying adoption barriers that explain the low to moderate adoption levels of smart farming... M. Gandorfer, S. Schleicher, K. Erdle

67. Akkerweb: A Platform for Precision Farming Data, Science, and Practice

The concept of precision farming (PF) was formulated about 40 years ago and the scientific knowledge for some applications of PF in The Netherlands has been available for almost 20 years. Also, in many cases equipment is available to implement PF in practice. In spite of all this PF uptake is still limited. An important reason for the limited uptake of PF is in the challenges that must be overcome to let data flow from sensors to data storage, to combine data sources and process them into rec... F.K. Van evert, T. Been, J.A. Booij, C. Kempenaar, G.J. Kessel, L.P. Molendijk

68. Using Profitability Map to Make Precision Farming Decisions: A Case Study in Mississippi

Recent development in precision agriculture technologies have generated massive amount of geospatial data of farming, such as yield mapping, seeding rates, input applications, and so on. However, producers are still struggling to convert those precision data into farm management decisions to improve productivity and profitability of farming.  Indeed, deriving accurate decisions at each site of the field requires complex and comprehensive modeling of crop yield responses to vari... X. Li, K. Coble

69. Toward a Precision Agricultural Implementation for Sugar Cane Plantations in Southwestern Region of Colombia, South America

The Colombian Sugar Cane Research Center, CENICAÑA, has initiated an ambitious project for the implementation of Precision Agriculture (PA) technologies in the Cauca river valley region, where one of its main objectives is to have the ability to collect large volumes of geospatial data. The main sugarcane growers in the country perform their work in the selected work area, which covers an area of ​​approximately 242,000 ha, characterized by diverse topographic and edaphic condition... J.A. Celades, J.H. Caicedo, C.E. García, H. Mora

70. Adoption of Precision Agriculture Technology: A Duration Analysis

Precision agriculture technologies have been available for adoption and utilization at the farm level for several decades. Some technologies have been readily adopted while others were adopted more slowly. An analysis of 621 Kansas Farm Management Association (KFMA) farmer members provided insights regarding adoption, upgrading, and abandonment of technology. The likelihood that farms adopt specific technology given that other technology had been adop... T.W. Griffin, E.A. Yeager

71. The Impact of Precision Agriculture Technologies on Farm Profitability in Kansas

Even with more than a decade long adoption of the precision agriculture (PA) technologies in the United States, its impact on farm profitability is still not clear. This paper uses farm level data from Kansas Farm Management Association (KFMA) to conduct the ex-post evaluation of PA technologies on farm profitability in Kansas. The analysis of the data using propensity score matching method indicates that there is on an average $60,000 difference in net returns of the farm with at least one P... S. Dhoubhadel, T.W. Griffin

72. Variable-Rate-Fertilization of Phosphorus and Lime – Economic Effects and Maximum Allowed Costs for Small-Scale Soil Analysis

The pH values and macro nutrient contents are characterised by considerable variance within a field. A constant-rate-fertilization, which is practiced at most farms, does not reduce this effect, it may even boost variance. Besides the suboptimal nutrient supply, the site-specific yield potential is not exploited. Constant-rate-fertilization and liming results in an inefficient utilisation by over- and undersupply of most of the areas within a field. Fertilization with lime and phosphorus caus... S. Schulte-ostermann, P. Wagner

73. Risk Efficiency of Site-Specific Nitrogen Management with Respect to Grain Quality

Profitability analyses of site-specific nitrogen management strategies have often failed to provide reasons for adoption of precision farming implements. However, often effects of precision farming on product quality and price premiums were not taken into account. This study aims to evaluate comparative advantages of site-specific nitrogen management over uniform nitrogen management with respect to aspects of risk, considering fertilizer effects on grain quality and price premiums. We develop... A. Meyer-aurich, Y. Karatay, M. Gandorfer

74. Use Cases for Real Time Data in Agriculture

Agricultural data of many types (yield, weather, soil moisture, field operations, topography, etc.) comes in varied geospatial aggregation levels and time increments. For much of this data, consumption and utilization is not time sensitive. For other data elements, time is of the essence. We hypothesize that better quality data (for those later analyses) will also follow from real-time presentation and application of data for it is during the time that data is being collected that errors can ... J. Krogmeier, D. Buckmaster, A. Ault, Y. Wang, Y. Zhang, A. Layton, S. Noel, A. Balmos

75. A Gap Analysis of Broadband Connectivity and Precision Agriculture Adoption in Southwestern Ontario, Canada

In Southwestern Ontario (Canada), the availability of broadband, or high-speed internet, likely influences the adoption of precision agriculture (PA) technologies and functions of these technologies which enable real-time data sharing between the field and the digital cloud, and back again to the farm-level user. This paper examines the reasons why PA technologies are, or are not adopted, and adoption in relation to varying levels of broadband access. Broadband access is defined here with var... H. Hambly, M. Chowdury

76. The Effect of Slope Gradient on the Modelling of Soil Carbon Dioxide Emissions in Different Tillage Systems at a Farm Using Precision Tillage Technology in Hungary

Understanding the role of natural drivers in greenhouse gas (GHG) emitted by agricultural soils is crucial because it contributes to selecting and adapting acceptable eco-friendly farming practices. Hence, Syngenta Ltd. collaborating with researchers, aimed to investigate the effect of two tillage treatments, conventional-tillage (CT) and minimum-tillage (MT) on soil carbon dioxide (CO2) emissions. The research field is in Hungary. Soil columns were derived from different tillage s... I.M. Kulmany, S. Benke, L. Bede, R. Pecze, V. Vona

77. Ecological Refugia As a Precision Conservation Practice in Agricultural Systems

Current global agriculture fails to meet the basic food needs of 687.7 million people. At the same time, our food system is responsible for catastrophic losses of biodiversity. Precision conservation solutions offer the potential to benefit both production systems and natural systems. Transforming low-producing areas on farm fields into ecological refugia may provide small-scale habitat and ecosystem services in fragmented agricultural landscapes. We collaborated with three precision agricult... H. Duff, B. Maxwell

78. Determining the Marginal Value of Extra Precision in Precision Grazing Systems – an Ex Ante Analysis of Impacts on System Productivity, Sustainability and Economics

The development of precision livestock farming (PLF) technologies for application in grazing systems is rapidly evolving. PLF technologies that facilitate the spatial and temporal management of variability in landscapes, pastures and animals promise to improve the efficiency, profitability and sustainability of livestock farming. However, such technologies as a complete package do not yet exist in grazing systems and the question of impacts at the farm system level remains unresolved. Other p... K. Behrendt, T. Takahashi, M.S. Rutter

79. Analysis of the Mapping Results Using SoilOptix TM Technology in Chile After Two Seasons

Soil mapping is a key element to successfully implement Integrated Nutrient Management (INM) in high value crops.  SoilOptixTM is a mapping service based on the use of gamma radiation technology that arrived in Chile in 2019. Since then, around 2000 ha have been mapped, mainly in fruit orchards and vineyards. The technology has demonstrated its value in determining the most limiting factors in new and old orchards, and the possibility of correcting them in a site-spe... R.A. Ortega, A.F. Ortega, M.C. Orellana

80. Report on Research and Extension of Precision Agriculture in Japan

The objective of this report is to present the current status of precision agriculture and smart agriculture in Japan. As of 2023, there are approximately 150 precision agriculture-related venture companies in Japan, and the number is increasing every year. Research related to precision agriculture is mainly conducted by the IT and Mechatronics Subcommittee of the Japanese Society for Agricultural and Biological Engineering, which consists of about 1,... E. Morimoto

81. Effect of Application Rate and Height on Spray Deposition and Efficacy of Fungicides Applied with a Spray Drone in Corn

Foliar application of fungicides is a key management strategy for corn growers in the United States to protect crop yield from diseases like southern corn rust (SCR), tar spot (TS), and northern corn leaf blight (NLB). Recently, the use of spray drones for fungicide applications have gained an interest among growers and consultants due to their potential as another application tool to ensure the timely application of fungicides. Currently, the information on optimal application parameters to&... C. Byers, S. Virk, R.C. Kemerait

82. A Flexible Software Architecture for General Precision Agriculture Decision Support Systems

Agricultural data management is a complex problem. Both the data and the needs of the users are diverse. Given the complexity of the problem, it's easy to ascertain that a single solution will not be able to meet the needs of all users. This paper presents a software architecture designed to be extensible as well as flexible enough to provide agricultural management tools for a wide variety of users. The solution is based on a microservice architecture, which allows for the creation of ne... W. Neils, D. Mommen

83. Spray Deposition and Efficacy of Pesticide Applications with Spray Drones in Row Crops in the Southeastern US

The use of spray drones for pesticide applications is expanding rapidly in agriculture, with one of the top uses currently being in the row crop production. Several research studies were undertaken in 2022 and 2023 to measure and assess spray deposition and efficacy of pesticides applied with spray drones in the major row crops (corn, cotton and peanuts) grown in the southeastern US. These studies also evaluated and compared the deposition and pesticide efficacy of spray drones with tradition... C. Byers, R. Meena, J. Kichler, R.C. Kemerait, L. Hand, S. Virk

84. Static and In-field Validation of Application Accuracy of Commercial Spray Drones at Varying Rates and Speeds

The emerging application of spray drones in agriculture for pesticide delivery has seen significant interest recently. Currently, various spray drone platforms with advanced capabilities such as variable-rate application and edge-spraying are commercially available; however, limited research and information is available regarding the application accuracy of these systems. Pesticide applications with spray drones in several research studies conducted at the University of Georgia in 2023 indica... S. Virk, R.K. Meena, C. Byers

85. Spray Deposition Characterization of Uniform and Variable-rate Applications with Spray Drones

The use of unmanned aerial application systems (also known as spray drones) has seen rapidly increasing interest in recent years due to their potential to allow for timely application of pesticides and being able to apply in areas inaccessible to ground application sprayers. Newer spray drone models’ have improved application systems such as rotary atomizers for creating spray droplets and capabilities such as variable-rate (VR) application for site-specific pesticide applications. An i... C. Byers, S. Virk, R.K. Meena, G. Rains

86. Field-level Zoning at Regional Scale Using Remote Sensing and GIS: Lessons Learned from the Desert Agriculture Region of Southern California

A decision support tool, SAMZ-Desert, utilizing GIS and remote sensing techniques, was created to delineate management zones (MZs) for a total of 6852 fields in California's Imperial County. Landsat-8 NDVI data from April 27, 2018, was employed for this purpose. Furthermore, 11 cloud-free images captured between 2018 and 2020 were statistically analyzed to assess within-field NDVI variability and the temporal stability of MZs at the regional level. Approximately 37% of the fields in the r... A.K. Verdi, A. Garg, A. Sapkota

87. Capacity Building of African Young Scientists in Precision Agriculture Through Cross-regional Academic Mobility for Enhanced Climate-smart Agri-food System: an Intra Africa Mobility Project on Precision Agriculture

Climate change is one of the main problems affecting food and nutrition globally, particularly in sub-Saharan Africa. Adapting to and/or mitigating climate change in the agri-food sector requires merging information technologies, genetic innovations, and sustainable farming practices to empower the agricultural youth sector to create effective and locally adapted solutions. Precision Agriculture applied to crops (PAAC), has been advocated as a strategic solution to mitigate/adapt agriculture ... N. Fassinou hotegni, A. Karangwa, A. Manyatsi, K.A. Frimpong, M. Amri, D. Cammarano, C. Lesueur, J. Taylor, S. Phillips, E. Achigan-dako

88. Are Pulses Really More Variable Than Cereals? a Country-wide Analysis of Within-field Variability

In Australia, pulses are underutilised by growers relative to cereal crops. There is significant global interest in growing pulses to provide more plant protein, and they also provide a string of agronomic and environmental benefits, such as their ability to fix nitrogen, and provide a pest and disease break for cereal crops. Many studies attribute this underutilisation to pulses exhibiting greater within-field yield variability than cereals. However, this has never been comprehensively exami... P. Filippi, T. Bishop, D. Al-shammari, T. Mcpherson

89. Precision Irrigation Strategies for Climate-resilient Crop Production and Water Resource Management

Deficit irrigation management practices that best optimize the use of limited water resources without impacting crop yield are necessary to ensure the sustainability of agricultural production. This is particularly crucial in regions characterized by semi-arid climate, like Western Kansas, where the challenge of depleting water resources is worsened by the occurrence of extreme climate conditions. Therefore, a data-driven irrigation management strategy such as one developed based on crop evap... K.E. Igwe, I. Onyekwelu, V. Sharda

90. Detailed Derivation of Spatial Soil Attributes Using Soil Sensor Data, Terrain Analysis and Soil Maps with Supervised Classification

Detailed knowledge of the spatial distribution of soils is critical for improved management and modeling in agriculture and forestry. However, information from existing soil maps is often not accurate enough and soil units are too large. In the current study, we used intensively collected information from soil profile analyses at the Scheyern site and used this as training data to map soil relationships on land in Dürnast with long-term fertilization experiments (BonaRes). Both... K. Heil

91. Comparative Analysis of Spray Nozzles on Drones: Volumetric Distribution at Different Heights

Agricultural drones are emerging as a revolutionary tool in modern agriculture, aiming to enhance precision and efficiency in crop management. One of their main advantages is the ability to operate in adverse soil and canopy height conditions, making them a valuable instrument for the application of agrochemicals. In this context, the optimization of spraying systems plays a critical role, with the goal of ensuring the effective application of agrochemicals, aiming to maximize productivity an... A. Felipe dos santos, J.E. Silva, O.P. Costa, F.D. Inácio , R. Oliveira, W. Silva, L. Lacerda, T. Orlando costa barboza

92. Decision Support Tools for Developing Aflatoxin Risk Maps in Peanut Fields

Aspergillus flavus and Aspergillus parasiticus hereafter referred to jointly as A. flavus, are soil fungi that infect and contaminate preharvest and postharvest peanuts with the carcinogenic secondary metabolite aflatoxin. A. flavus can cause extensive economic losses to peanut growers and shellers by contaminating peanut kernels with aflatoxins. In the southeastern U.S., contamination from aflatoxin continues to be a major threat to the peanut industry and... G. Vellidis, M. Abney, T. Burlai, J. Fountain, R.C. Kemerait, S. Kukal, L. Lacerda, S. Maktabi, A. Peduzzi, C. Pilcon, M. Sysskind

93. A Decision-support Tool to Optimize Mid-season Corn Nitrogen Fertilizer Management from Red, Green, Blue SUAS Images

Corn receives more nitrogen (N) fertilizer per unit area than any other row crop and optimized soil fertility management is needed to help maximize farm profitability. In Arkansas, N fertilizer for corn is delivered in two- or three-split applications. Three-split applications may provide a better match to crop needs and contribute to minimizing yield loss from N deficiency. However, the total amounts are selected based on soil texture and yield goal without accounting for early-season losses... A. Poncet, T. Bui, W. France, T. Roberts, L. Purcell, J. Kelley

94. Deposition Characteristics of Different Style Spray Tips at Varying Speeds and Altitudes from an Unmanned Aerial System

The application of pesticides with a UAS has become a popular practice over the past few years within crop production. The ability to carry larger volumes of liquid i onboard, reduced costs, and simple operation has attributed to the increased popularity. Additionally, the increased number of fungicide applications in corn due to the tar spot disease has shown that the demand for aerial applications of all types has increased with UAS pesticide application technology providing the opportunity... A. Leininger, K. Verhoff, K. Lovejoy, A. Thomas, G. Davis, A. Emmons, J.P. Fulton

95. Coupling Macro-scale Variability in Soil and Micro-scale Variability in Crop Canopy for Delineation of Site-specific Management Grid

The efficient application of fertilizers via Site-Specific Management Units (SSMUs) or Management Zones (MZs) can significantly enhance crop productivity and nitrogen use efficiency. Conventional mathematical and data-driven clustering methods for MZ delineation, while prevalent, often lack precision in identifying productivity zones. This research introduces a knowledge-driven productivity zone to mitigate these limitations, offering a more precise and efficacious approach. The hyp... W.A. Admasu, D. Mandal, R. Khosla

96. Using Remote Sensing to Benchmark Crop Coefficient Curves of Sweet Corn Grown in the Southeastern United States

Irrigation is responsible for over 75% of global freshwater use, making it the largest consumer of the world’s freshwater resources. With freshwater scarcity increasing worldwide, increased efficient irrigation water use is necessary. Smart irrigation is described as ‘the linking of technology and fundamental knowledge of crop physiology to significantly increase irrigation water use efficiency'. Irrigation scheduling tools such as smartphone applications have become... E. Bedwell, L. Lacerda, T. Mcavoy, B.V. Ortiz, J. Snider, G. Vellidis, Z. Yu

97. AI Tools in Agri DSS Pipeline - the Case of Irrigated Sugarbeet

A general pipeline that can be associated to a DSS includes several steps. Data Collectionn includes Acquisition, extraction, and aggregation of data from previously identified and selected sources. Data Cleaning and preparation make data available for exploratory analysis that make them usable. Data Analysis is then applied to extract meaningful information e.g. by statistical and/or simulation models. Data are successively synthesized and visualized to make them clear to the decision-maker ... G.-. Vitali, C. Ferraz

98. Onboard Weed Identification and Application Test with Spraying Drone Systems

Commercial spraying drone systems nowadays have the ability to implement variable rate applications according to pre-loaded prescription maps. Efforts are needed to integrate sensing and computing technologies to realize on-the-go decision making such as those on the ground based spraying systems. Besides the understudied subject of drone spraying pattern and efficacy, challenges also exist in the decision making, control, and system integration with the limits on payload and flight endurance... Y. Shi, M. Islam, K. Steele, J.D. Luck, S. Pitla, Y. Ge, A. Jhala, S. Knezevic

99. Field Validation of Airblast Spray Advisor Decision Support Web App for Citrus Applications

Field conditions influencing the effectiveness of pesticide application in orchard and vineyard production systems are complex. As a result, growers and pesticide applicators grapple with how to make the right decisions for setting up the sprayer that will lead to the most efficient and effective outcomes. Airblast Spray Advisor, a decision support web app built on MATLAB was designed to assist with planning and evaluation of such applications when using airblast sprayers. It re... P.A. Larbi

100. Optimizing Vineyard Crop Protection: an In-depth Study of Spraying Drone Operational Parameters

In modern agriculture, the precise and efficient application of agrochemicals is essential to ensure crop health and increase productivity while minimizing adverse environmental impacts. While traditional spraying methods have long been the cornerstone of crop protection, the introduction of unmanned aerial vehicles (UAVs), commonly known as drones), has led to a revolutionary era in agriculture. UAVs offer novel opportunities to improve agricultural practices by providing precision, efficien... V. Psiroukis, S. Fountas, H. Uyar, A. Balafoutis, A. Kasimati

101. Integrated Data-driven Decision Support Systems

Site-specific and data-driven decision support systems in agriculture are evolving fast with the rapid advancements in cutting-edge technologies such as Agricultural Artificial Intelligence (AgAI) and big data integration. Data driven decision support systems have the potential to revolutionize various aspects of farming, from crop monitoring and precision management decisions to the way growers interact with complex technologies. The AgAI decision support-based systems excel at ana... L.A. Puntel, P. Pellegrini, S. Joalland , J. Rattalino, L. Vitantonio

102. Simulating Climate Change Impacts on Cotton Yield in the Texas High Plains

Crop yield prediction enables stakeholders to plan farming practices and marketing. Crop models can predict crop yield based on cropping system and practices, soil, and other environmental factors. These models are being used for decision support in agriculture in a variety of ways. Cultivar selection, water and nutrient input optimization, planting date selection, climate change analysis and yield prediction are some of the promising area of applications of the models in field level farm man... B. Ghimire, R. Karn, O. Adedeji, G. Ritchie, W. Guo

103. Predicting Within-field Cotton Yield Variability Using DSSAT for Decision Support in Precision Agriculture

The quantification of spatial and temporal variability of cotton (Gossypium hirsutum L.)  yield provides critical information for optimizing resources, especially water, in the Southern High Plains (SHP), Texas, with a diminishing water supply. The within-field yield variation is mostly influenced by the properties of soil and their interaction with water and nutrients. The objective of this study was to predict within-field cotton yield variability using a crop growth mode... B. Ghimire, R. Karn, O. Adedeji, W. Guo

104. From Scientific Literature to the End User: Democratizing Access to Data Products Through Interactive Applications

In recent years, the sustained advance in the creation of powerful programming libraries is allowing not only the creation of complex models with predictive capabilities but also revolutionizing visualization processes and the deployment of interactive applications. Some of these tools, such as Streamlit or Shiny frameworks in languages such as Python or R, allow us to create from simple applications with friendly interfaces to complex tools. These interactive digital decision dashboards allo... C. Hernandez, A. Correndo, J. Lacasa, P. Magalhaes cisdeli, G.N. Nocera santiago, I. Ciampitti

105. Predicting the Spatial Distribution of Aflatoxin Hotspots in Peanut Fields Using DSSAT CSM-CROPGRO-PEANUT-AFLATOXIN

Aflatoxin contamination in peanuts (Arachis hypogaea L.) is a persistent concern due to its detrimental effects on both profitability and public health. Several plant stress-inducing factors, including high soil temperatures and low soil moisture, have been associated with aflatoxin contamination levels. Understanding the correlation between stress-inducing factors and contamination levels is essential for implementing effective management strategies. This study uses the DSSAT CSM-CR... S. Maktabi, G. Vellidis, G. Hoogenboom, K. Boote, C. Pilcon, J. Fountain, M. Sysskind, S. Kukal

106. Report from Finland - How We Speed Up Innovation Uptake in Agriculture in Finland

Finnish agriculture is rapidly digitalizing. While the number of farms is decreasing, those that remain are increasingly adopting new technologies. Finns have a tradition of being early adopters of mobile technologies, with the Finnish phone company Nokia being a notable forerunner. However, in agriculture, users tend to be more conservative, resulting in lower than expected adoption rates of Precision Farming. The reasons for this are not only financial but also related to the usability issu... H.E. Haapala

107. Trends in Agricultural Technology Advancements: Insights from US Patent Analysis

Meeting the demand for food, fiber, and fuel production while addressing environmental concerns and enhancing societal benefits underscores the need to transition to conservation approaches and sustainable intensification pathways in current agricultural cropping systems. Technological advances in agriculture offer promising opportunities to facilitate this transition. Following this rationale, this study aims to analyze prevailing trends in agricultural technology advancements. Active patent... P.B. Cano, A. Carcedo, F. Gomez, C. Hernandez, V. Gimenez, I. Ciampitti