Proceedings

Find matching any: Reset
In-Season Nitrogen Management
Precision Dairy and Livestock Management
International Symposium on Robotics and Automation
In-Season Nitrogen Management
Remote Sensing for Nitrogen Management
Precision Weed Management
Add filter to result:
Authors
Aizpurua, A
Alfonso, F
Amaral, L.R
Ampatzidis, Y
Aranguren, M
Balboa, G
Bansal, G
Barnes, E.M
Barwick, J.D
Bastos, L
Bean, G
Bean, G.M
Beltarre, G
Bennur, P
Berger, A.G
Bodas, V
Bohman, B
Brorsen, B.W
Calera, A
Calera, M
Camberato, J
Camberato, J.J
Camberato, J.J
Cambouris, A
Cammarano, D
Campos, I
Campoy, J
Cao, Q
Carter, P
Carter, P.R
Castellón, A
Cesario Pereira Pinto, J
Chen, S
Chen, Z
Cordero, E
Coulter, J.A
Custer, S
Dallago, G.M
Dobos, R
Dong, R
Dong, R
Dos Reis, A.A
Duchemin, M
Fageria, N.K
Fassana, N
Ferguson, R
Ferguson, R.B
Ferguson, R.B
Ferguson, R.B
Fernandez, F
Fernandez, F.G
Fernandez, F.G
Figueiredo, D.M
Figueiredo, G.K
Flint, E.A
Fountas, S
Franzen, D
Franzen, D.W
Franzen, D.W
Freitas, R.G
Fulton, J.P
Fulton, J.P
Galzki, J
Gandorfer, M
Ghimire, D
Grignani, C
Gunzenhauser, R
Gupta, M
Gupta, S
Hartschuh, J
Hatfield, J.L
Hatfield, J.L
Hawkins, E
Hoffman, E
Hopkins, B.G
Jia, M
Jiang, H
Jimenez, N
Karkee, M
Khosla, R
Kitchen, N.R
Kitchen, N.R
Kitchen, N.R
Kitchen, N.R
Klopfenstein, A
Kuehner, K
Laacouri, A
Laboski, C
Laboski, C.A
Laboski, C.A
Lacerda, L.N
Lamb, D.W
Lamparelli, R.A
Leroux, G.D
Li, D
Li, D
Li, S
Li, Y
Lima, J.P
Liu, X
Longchamps, L
Longchamps, L
Longchamps, L
Lopez, H
Lowenberg-DeBoer, J
Lu, J
Lu, Y
Luck, J.D
Magalhães, P.S
Maharjan, B
Massey, R
McArtor, B
Mi, G
Miao, Y
Miao, Y
Miao, Y
Miao, Y
Miao, Y
Mieno, T
Miniotti, E.F
Mizuta, K
Mizuta, K
Morales, A.C
Moretti, B
Mueller, N
Mulla, D
Mulla, D
Mulla, D.J
Mulla, D.J
Mulla, D.J
Mullen, R.W
Nafziger, E
Nafziger, E.D
Nafziger, E.D
Nielsen, R.L
Nigon, T
Osann, A
Otto, R
Panneton, B
Panneton, B
Pereira, F.R
Pereira, F.R
Pereira, J.C
Phillippi, E
Phillips, S.B
Pitla, S.K
Plaza, C
Puntel, L
Quinn, D.J
Ransom, C.J
Ransom, C.J
Ransom, C.J
Raun, W.R
Raun, W.R
Raun, W.R
Rennó, L.N
Roberts, D.C
Roger, T
Romani, M
Rose, D
Rosen, C
Rosen, C
Rupp, C
Sacco, D
Salzer, Y
Sanches, G.M
Sanchez, S
Santos, A.B
Santos, R.A
Sawyer, J
Sawyer, J.E
Sawyer, J.E
Scharf, P.C
Schepters, J.S
Schmidt, J.P
Scott, M
Shanahan, J
Sharda, A
Sharda, A
Shearer, S
Shearer, S.A
Shearer, S.A
Silveira, R.R
Simard, M
Simard, M
Solie, J.B
Solie, J.B
Sripada, R.P
Taylor, R.K
Tenni, D
Theriault, R
Theriault, R
Thomason, W.E
Thompson, L
Thompson, L.J
Tian, Y
Trotter, M
Turk, P
Vetsch, J
Villodre, J
Wakahara, S
Wakahara, S
Wang, C
Wang, N
Wang, X
Wang, X
Weckler, P
Welch, M
Wilson, G.L
Xia, T
Xu, J
Yang, C
Yost, M
Yost, M.A
Zhang, J
Zhang, Y
Zhao, X
Zhu, Y
Ziadi, N
da Silva, L.D
de Azevedo, K.K
de Sousa, M.G
Topics
Precision Weed Management
In-Season Nitrogen Management
In-Season Nitrogen Management
International Symposium on Robotics and Automation
Precision Dairy and Livestock Management
Remote Sensing for Nitrogen Management
Type
Poster
Oral
Year
2010
2018
2022
2024
2016
2008
Home » Topics » Results

Topics

Filter results52 paper(s) found.

1. Sensing The Inter-row For Real-time Weed Spot Spraying In Conventionally Tilled Corn Fields

The spatial distribution of weeds is aggregated most of the time in crop fields. Site-specific management of weeds could result in economical and environmental benefits due to he... L. Longchamps, B. Panneton, M. Simard, R. Theriault, T. Roger

2. Partial Weed Scouting For Exhaustive Real-time Spot Spraying Of Herbicides In Corn

Real-time spot spraying of weeds implies the use of plant detectors ahead of a sprayer. The range of weed spatial autocorrelation perpendicularly to crop rows is often greater than the space between the corn rows. To assess the possibility of using less than one plant detector scouting each inter-row, a one hectare field was entirely sampled with ground pictures at the appropriate timing for weed spraying. Different ways of disposing the detectors ahead of the sprayer were virtually tested. S... L. Longchamps, B. Panneton, G.D. Leroux, M. Simard, R. Theriault

3. Generating Herbicide Effective Application Rate Maps Based On GPS Position, Nozzle Pressure, And Boom Section Actuation Data Collected From Sprayer Control Systems

The application of pre- and post- emergence burn-down herbicides (i.e., glyphosate) continues to increase as producers attempt to reduce both negative environmental impacts from tillage and input costs from labor, machinery and materials.  The use of precision agriculture technologies such as automatic boom section control allows producers to reduce off-target application when applying herbicides.  While automatic boom section control has provided benefits, pressure differences acro... J.D. Luck, A. Sharda, S.K. Pitla, J.P. Fulton, S.A. Shearer

4. Effect Of Precision Guided Cultivation On Weed Control In Wide Row Cropping Systems

Wide row cropping has been traditionally followed in summer crops but it is also becoming popular in winter crops such as chickpeas and lupins.  High precision guidance systems with 2 cm accuracy offer unique opportunities to cultivate closer to the row and increase weed control efficiency in wide row cropping systems. Two field experiments were conducted in chickpeas with a Real Time Kinematic Differential Global Positioning System (RTK-DGPS) controlled mechanical cultivation. Cultivati... M. Gupta, ,

5. Ear Deployed Accelerometer Behaviour Detection in Sheep

An animal’s behaviour can be a clear indicator of their physiological and physical state. Therefore as resting, eating, walking and ruminating are the predominant daily activities of ruminant animals, monitoring these behaviours could provide valuable information for management decisions and individual animal health status. Traditional animal monitoring methods have relied on human labor to visually observe animals. Accelerometer technology offers the possibility of remotely monitoring ... J.D. Barwick, M. Trotter, D.W. Lamb, R. Dobos, M. Welch

6. Nitrogen Management in Lowland Rice

Rice is staple diet for more than fifty percent of the world population and nitrogen (N) deficiency is one of the major yields limiting constraints in most of the rice producing soils around the world. The lowland rice N recovery efficiency is <50% of applied fertilizers in most agro-ecological regions. The low N efficiency is associated with losses caused by leaching, volatilization, surface runoff, and denitrification. Hence, improving N use efficiency is crucial for higher yields, low c... N.K. Fageria, A.B. Santos

7. Prediction of Nitrogen Needs with Nitrogen-rich Strips and Ramped Nitrogen Strips

Both nitrogen rich strips and ramped nitrogen strips have been used to estimate topdress nitrogen needs for winter wheat based on in-season optical reflectance data. The ramped strip system places a series of small plots in each field with increasing levels of nitrogen to determine the application rate at which predicted yield response to nitrogen reaches a plateau. The nitrogen-rich strip system uses a nitrogen fertilizer optimization algorithm based on optical reflectance measures from the ... D.C. Roberts, B.W. Brorsen, W.R. Raun, J.B. Solie

8. Spatial Patterns of Nitrogen Response Within Corn Production Fields

Corn (Zea mays L.) yield response to nitrogen (N) application is critical to being able to develop management practices that reduce N application or improve N use efficiency. Nitrogen rate studies have been conducted within small plots; however, there have been few field scale evaluations. This study was designed to evaluate N response across 14 corn fields in central Iowa using different rates of N applied in strips across fields. These fields ranged in size from 15 to 130 ha with N... J.L. Hatfield

9. Developing Nitrogen Algorithms for Corn Production Using Optical Sensors

Remote sensing for nitrogen management in cereal crops has been an intensive research area due to environmental concerns and economic realities of today’s agronomic system. In the search for improved nitrogen rate decisions, what approach is most often taken and are those approaches justified through scientific investigation? The objective of this presentation is to educate decision makers on how these algorithms are developed and evaluate how well they work in the field on a small-plot... R.W. Mullen, S.B. Phillips, W.R. Raun, W.E. Thomason

10. Variability in Observed and Sensor Based Estimated Optimum N Rates in Corn

Recent research showed that active sensors such as Crop Circle can be used to estimate in-season N requirements for corn. The objective of this research was to identify sources of variability in the observed and Crop Circle-estimated optimum N rates. Field experiments were conducted at two locations for a total of five sites during the 2007 growing season using a randomized complete block design with increasing N rates applied at V6-V8 (NV6) as the treatment factor. Field sites were selected ... R.P. Sripada, J.P. Schmidt

11. Controller Performance Criteria for Sensor Based Variable Rate Application

Sensor based variable rate application of crop inputs provides unique challenges for traditional rate controllers when compared to map based applications. The controller set point is typically changing every second whereas with a map based systems the set point changes much less frequently. As applied data files for a sensor based variable rate nitrogen applicator were obtained from a wheat field in north central Oklahoma. These data were analyzed to determine the magnitude and frequency of r... R.K. Taylor, P. Bennur, J.B. Solie, N. Wang, P. Weckler, W.R. Raun

12. Using Drone Based Sensors to Direct Variable-Rate, In-Season, Aerial Nitrogen Application on Corn

Improving nutrient management on farms is a critical issue nationwide. Applying a portion of N fertilizer during the growing season, alongside the growing corn crop is one way to improve nitrogen management. Sidedress N applications allow the availability of N fertilizer to more closely match the time when the crop is rapidly uptaking N. Additionally, waiting to apply a portion of the N during the growing season allows for management which is responsive to current growing season conditions.... L.J. Thompson

13. Utilization of Spatially Precise Measurements to Autocalibrate the EPIC Agroecosystem Model

Corn nitrogen recommendations for individual fields must improve to minimize the negative influence that agriculture has on the environment and society. Two adaptive N management approaches for making in-season N fertilizer recommendations are remote sensing and crop systems modeling. Remote sensing has the advantage of characterizing the spatial variability at a high spatial resolution, and crop models are prognostic and can assess expected additions and losses that are not yet reflected by ... T. Nigon, D. Mulla, C. Yang

14. Corn Nitrogen Fertilizer Recommendation Models Based on Soil Hydrologic Groups Aid in Predicting Economically Optimal Nitrogen Rates

Nitrogen (N) fertilizer recommendations that match corn (Zea mays L.) N needs maximize grower profits and minimize water quality consequences. However, spatial and temporal variability makes determining future N requirements difficult. Studies have shown no single soil or weather measurement is consistently increases accuracy, especially when applied over a regional scale, in predicting economically optimal N rate (EONR). Basing site N response on soil hydrological group could help account fo... G.M. Bean, N.R. Kitchen, J.J. Camberato, R.B. Ferguson, F.G. Fernandez, D.W. Franzen, C.A. Laboski, E.D. Nafziger, J.E. Sawyer, P.C. Scharf

15. Active Canopy Sensors for the Detection of Non-Responsive Areas to Nitrogen Application in Wheat

Active canopy sensors offer accurate measurements of crop growth status that have been used in real time to estimate nitrogen (N) requirements. NDVI can be used to determine the absolute amount of fertilizer requirement, or simply to distribute within the field an average rate defined by decision models using other diagnostics. The objective of this work was to evaluate the capacity of active canopy sensors to determine yield and N application requirements within a site at jointing stage (Fee... A.G. Berger, E. Hoffman, N. Fassana, F. Alfonso

16. Using a UAV-Based Active Canopy Sensor to Estimate Rice Nitrogen Status

Active canopy sensors have been widely used in the studies of crop nitrogen (N) estimation as its suitability for different environmental conditions. Unmanned aerial vehicle (UAV) is a low-cost remote sensing platform for its great flexibility compared to traditional ways of remote sensing. UAV-based active canopy sensor is expected to take the advantages of both sides. The objective of this study is to determine whether UAV-based active canopy sensor has potential for monitoring rice N statu... S. Li, Q. Cao, X. Liu, Y. Tian, Y. Zhu

17. Deriving Fertiliser VRA Calibration Based on Ground Sensing Data from Specific Field Experiments

Nitrogen (N) fertilisation affects both rice yield and quality. In order to improve grain yield while limiting N losses, providing N fertilisers during the critical growth stages is essential. NDRE is considered a reliable crop N status indicator, suitable to drive topdressing N fertilisation in rice. A multi-year experiment on different rice varieties (Gladio, Centauro, and Carnaroli) was conducted between 2011 and 2017 in Castello d’Agogna (PV), northwest Italy, with the aim of i) est... E. Cordero, D. Sacco, B. Moretti, E.F. Miniotti, D. Tenni, G. Beltarre, M. Romani, C. Grignani

18. Active and Passive Sensor Comparison for Variable Rate Nitrogen Determination and Accuracy in Irrigated Corn

The objectives of this research were to (i) compare active and passive crop canopy sensors’ sidedress variable rate nitrogen (VRN) derived from different vegetation indices (VI) and (ii) assess VRN recommendation accuracy of active and passive sensors as compared to the agronomic optimum N rate (AONR) in irrigated corn. This study is comprised of six site-years (SY), conducted in 2015, 2016 and 2017 on different soil types (silt loam, loam and sandy loam) and with a range of preplant-ap... L. Bastos, R.B. Ferguson

19. Use of Field Diagnostic Tools for Top Dressing Nitrogen Recommendation When Organic Manures Are Applied in Humid Mediterranean Conditions

Nitrogen is often applied in excessive quantities, causing nitrogen losses. In recent years, the management of large quantities of manure and slurry compounds has become a challenge. The aim of this study was to assess the usefulness of the proxy tools Yara N-testerTMand RapidScan CS-45 for diagnosing the N nutritional status of wheat crops when farmyard manures were applied. Our second objective was to start designing a N fertilization strategy based on these measurements. To achieve these o... A. Castellón, A. Aizpurua, M. Aranguren

20. Predicted Nitrate-N Loads for Fall, Spring, and VRN Fertilizer Application in Southern Minnesota

Nitrate-N from agricultural fields is a source of pollution to fresh and marine waters via subsurface tile drainage.  Sensor-based technologies that allow for in-season monitoring of crop nitrogen requirements may represent a way to reduce nitrate-N loadings to surface waters by allowing for fertilizer application on a more precise spatial and temporal resolution.  However, little research has been done to determine its effectiveness in reducing nitrate-N losses.  In this study... G.L. Wilson, D.J. Mulla, J. Galzki, A. Laacouri, J. Vetsch

21. Improving Corn Nitrogen Rate Recommendations Through Tool Fusion

 Improving corn (Zea maysL,) nitrogen (N) fertilizer rate recommendation tools can improve farmer’s profits and help mitigate N pollution. One way to improve N recommendation methods is to not rely on a single tool, but to employ two or more tools. Thiscould be thoughtof as “tool fusion”.The objective of this analysis was to improve N management by combining N recommendation tools used for guiding rates for an in-seasonN application. This evaluation ... C.J. Ransom, N.R. Kitchen, J.J. Camberato, P.R. Carter, R.B. Ferguson, F.G. Fernandez, D.W. Franzen, C.A. Laboski, E.D. Nafziger, J. Shanahan, J.E. Sawyer

22. Utilizing Weather, Soil, and Plant Condition for Predicting Corn Yield and Nitrogen Fertilizer Response

Improving corn (Zea mays L.) nitrogen (N) fertilizer rate recommendation tools should increase farmer’s profits and help mitigate N pollution. Weather and soil properties have repeatedly been shown to influence crop N need. The objective of this research was to improve publicly-available N recommendation tools by adjusting them with additional soil and weather information. Four N recommendation tools were evaluated across 49 N response trials conducted in eight U.S. states over three gr... N.R. Kitchen, M.A. Yost, C.J. Ransom, G. Bean, J. Camberato, P. Carter, R. Ferguson, F. Fernandez, D. Franzen, C. Laboski, E. Nafziger, J. Sawyer

23. Levels of Inclusion of Crambe Meal (Crambe Abyssinica Hochst) in Sheep Diet on the Balance of Nitrogen and Ureic Nitrogen in the Blood Serum

Crambe meal, which is a co-product of biodiesel production, is a potential substitute for conventional protein sources in ruminant diets. The objective of this study was to evaluate the effect of the substitution of crude protein of the concentrate by crude protein of crambe meal with increasing levels (0, 25, 50, and 75%) on nitrogen balance and blood plasma urea nitrogen concentration in sheep. Four male sheep, rumen fistulated, were placed in metabolic crates and distributed in a 4 x 4 Lat... K.K. De azevedo, D.M. Figueiredo, M.G. De sousa, G.M. Dallago, R.R. Silveira, L.D. Da silva, L.N. Rennó, R.A. Santos

24. Evaluating Remote Sensing Based Adaptive Nitrogen Management for Potato Production

Conventional nitrogen (N) management for potato production in the Upper Midwest, USA relies on using split-applications of N fertilizer or a controlled release N product. Using remote sensing to adaptively manage N applications has the potential to improve N use efficiency and reduce losses of nitrate to groundwater, which are important regional concerns. A two-year plot-scale experiment was established to evaluate adaptive N-management using remote sensing compared to conventional practices ... B. Bohman, D. Mulla, C. Rosen

25. Improving Active Canopy Sensor-Based In-Season N Recommendation Using Plant Height Information for Rain-Fed Maize in Northeast China

The inefficient utilization of nitrogen (N) fertilizer due to leaching, volatilization and denitrification has resulted in environmental pollution in rain-fed maize production in Northeast China. Active canopy sensor-based in-season N application has been proven effective to meet maize N requirement in space and time. The objective of this research was to evaluate the feasibility of using active canopy sensor for guiding in in-season N fertilizer recommendation for rain-fed maize in Northeast... X. Wang, Y. Miao, T. Xia, R. Dong, G. Mi, D.J. Mulla

26. Precision Nitrogen and Water Management for Enhancing Efficiency and Productivity in Irrigated Maize

Nitrogen and water continue to be the most limiting factors for profitable maize production in the western Great Plains. The objective of this research was to determine the most productive and efficient nitrogen and water management strategies for irrigated maize.  This study was conducted in 2016 at Colorado State University’s Agricultural Research Development and Educational Center, in Fort Collins, Colorado. The experiment included a completely randomized block design with ... E. Phillippi, R. Khosla, L. Longchamps, P. Turk

27. Practical Prescription of Variable Rate Fertilization Maps Using Remote Sensing Based Yield Potential

This paper describes a practical approach for the prescription of variable rate fertilization maps using remote sensing data (RS) based on satellite platforms, Landsat 8 and Sentinel-2 constellation. The methodology has been developed and evaluated in Albacete, Spain, in the framework of the project FATIMA (http://fatima-h2020.eu/). The global approach considers the prescription of N management prior to the growing season, based on a spatially distributed N balance. Although the diagnosis of ... A. Osann, I. Campos, M. Calera, C. Plaza, V. Bodas, A. Calera, J. Villodre, J. Campoy, S. Sanchez, N. Jimenez, H. Lopez

28. Estimating Litchi Canopy Nitrogen Content Using Simulated Multispectral Remote Sensing Data

This study aims at evaluating the performance of seven highly spatial resolution remote sensing data in litchi canopy nitrogen content estimation. The litchi canopy reflectance were collected by ASD field spectrometer. Then the canopy spectral data were resampled based on the spectral response functions of each satellite sensors (Geo-eye, GF-WFV1, Rapid-eye, WV-2, Landsat 8, WV-3, and Sentinel-2). The spectral indices in literature were derived based on the simulated data. Meanwhile, the succ... D. Li, H. Jiang, S. Chen, C. Wang

29. Soil and Crop Factors to Site-specific Nitrogen Management on Sugarcane Fields

Nitrogen (N) is one of the most widely used fertilizers in crops and the most harmful to the environment. The increase fertilizers consumption, mainly N sources (one of the most widely fertilizer used in sugarcane fields), is one of the main factors underlying the sustainability of the entire production process. Currently, N recommendations in sugarcane are based only on the expected yield. However, there is little agronomic support for nitrogen (N) recommendations based on expected yield, de... G.M. Sanches, R. Otto, F.R. Pereira

30. Spatial and Temporal Factors Impacting Incremental Corn Nitrogen Fertilier Use Efficiency

Current tools for making crop N fertilizer recommendations are primarily based on plot and field studies that relate the recommendation to the economic optional N rate (EONR).  Some tools rely entirely on localized EONR (e.g., MRTN). In recent years, tools have been developed or adapted to  account for within-field variation in crop N need or variable within season factors. Separately, attention continues to elevate for how N fertilizer recommendations might account for environmenta... N.R. Kitchen, C.J. Ransom, J.S. Schepters, J.L. Hatfield, R. Massey

31. Evaluating a Satellite Remote Sensing and Calibration Strip-based Precision Nitrogen Management Strategy for Corn in Minnesota and Indiana

Precision nitrogen (N) management (PNM) aims to match N supply with crop N demand in both space and time and has the potential to improve N use efficiency (NUE), increase farmer profitability, and reduce N losses and negative environmental impacts. However, current PNM adoption rate is still quite low. A remote sensing and calibration strip-based PNM strategy (RS-CS-PNM) has been developed by the Precision Agriculture Center at the University of Minne... K. Mizuta, Y. Miao, A.C. Morales, L.N. Lacerda, D. Cammarano, R.L. Nielsen, R. Gunzenhauser, K. Kuehner, S. Wakahara, J.A. Coulter, D.J. Mulla, D. . Quinn, B. Mcartor

32. Nitrogen Fertilization of Potato Using Management Zone in Prince Edward Island, Canada

Potato is sensible to nitrogen (N) and optimal N fertilization improve the tuber yield and its quality. Potato crop N response varies widely within fields. It is also well recognized that significant spatial and temporal variation in soil N availability occurs within crop fields. However, uniform application of N fertilizer is still the most common practice under potato production. Management zone (MZ) approach can help growers to achieve a part of this. The goal of the project is to compare ... A. Cambouris, M. Duchemin, N. Ziadi

33. Evaluating the Potential of Improving In-season Nitrogen Status Diagnosis of Potato Using Leaf Fluorescence Sensors and Machine Learning

Precision nitrogen (N) management is particularly important for potato crops due to their high N fertilizer demand and high N leaching potential caused by their shallow root systems and preference for coarse-textured soils. Potato farmers have been using a standard lab analysis called petiole nitrate-N (PNN) test as a tool to diagnose potato N status and guide in-season N management. However, the PNN test suffers from many disadvantages including time constraints, labor, and cost of analysis.... S. Wakahara, Y. Miao, S. Gupta, C. Rosen, K. Mizuta, J. Zhang, D. Li

34. Nitrogen Status Prediction on Pasture Fields Can Be Reached Using Visible Light UAV Data Combined with Sentinel-2 Imagery

Pasture fields under integrated crop-livestock system usually receive low or no nitrogen fertilization rates, since the expectation is that nitrogen demand will be provided by the soybean remaining straw cropped previously. However, keeping nitrogen at suitable levels in the entire field is the key to achieving sustainability in agricultural production systems. In this sense, remote sensing technologies play an essential role in nitrogen monitoring in pastures and crops. With the launch of th... F.R. Pereira, J.P. Lima, R.G. Freitas, A.A. Dos reis, L.R. Amaral, G.K. Figueiredo, R.A. Lamparelli, J.C. Pereira, P.S. Magalhães

35. Variable Rate Nitrogen Approach in a Potato-wheat-wheat Cropping System

Nitrogen application in agriculture is a vital process for optimal plant growth and yield outcomes. Different factors such as topography, soil properties, historical yield, and crop stress affect nitrogen (N) needs within a field. Applying variable N within a field could improve precision agriculture. Optimal N management is a system that involves applying a conservative variable base rate at or shortly after planting followed by in-season assessment and, if needed, variable rate application&... E.A. Flint, M. Yost, B.G. Hopkins

36. Evaluation of Nitrogen Recommendation Tools for Winter Wheat in Nebraska

Attaining both high yield and high nitrogen (N) use efficiency (NUE) simultaneously remains a current research challenge in crop production. Digital ag technologies for site-specific N management have been demonstrated to improve NUE. This is due to the ability of digital technologies to account for the spatial and temporal distribution of crop N demand and available soil N in the field which varies greatly according t... J. Cesario pereira pinto, L. Thompson, N. Mueller, T. Mieno, G. Balboa, L. Puntel

37. Nitrogen Placement Considerations for Maize Production in the Eastern US Cornbelt

Proper fertilizer placement is essential to optimize crop performance and amount of applied nitrogen (N) along with crop yield potential. There exists several practices currently used in both research within farming operations on how and when to apply N to maize (Zea mays L). Split applications of N in Ohio is popular with farmers and provides an economic benefit but more recently some farmers have been using mid- and late-season N fertilizer applications for their maize production.&... J.P. Fulton, E. Hawkins, S. Shearer, A. Klopfenstein, J. Hartschuh, S. Custer

38. In-season Nitrogen Management of Maize Based on Nitrogen Status and Lodging Risk Prediction

Development of effective precision nitrogen (N) management strategies is crucially important for food security and sustainable development. Lodging is one of the major constraints to increasing maize yield that can be induced by strong winds, and is also influenced by management practices, like N rate. When making in-season N application decisions, lodging risk should be considered to avoid yield loss. Little has been reported on in-season N management strategies that also incorporate lodging... R. Dong, Y. Miao, X. Wang

39. Assessment of Active Crop Canopy Sensor As a Tool for Optimal Nitrogen Management in Dryland Winter Wheat

Optimum nitrogen (N) fertilizer application is important for agronomic, economic, and environmental reasons. Among different N management tools, active crop canopy sensors are a recent and promising tool widely evaluated for use in corn but still under-evaluated for use in winter wheat. The objective of this study was to determine whether vegetation indices derived from in-season active crop canopy sensor data can be used to predict winter wheat grain yield and protein content and subsequentl... D. Ghimire

40. In-season Diagnosis of Winter Wheat Nitrogen Status Based on Rapidscan Sensor Using Machine Learning Coupled with Weather Data

Nitrogen nutrient index (NNI) is widely used as a good indicator to evaluate the N status of crops in precision farming. However, interannual variation in weather may affect vegetation indices from sensors used to estimate NNI and reduce the accuracy of N diagnostic models. Machine learning has been applied to precision N management with unique advantages in various variables analysis and processing. The objective of this study is to improve the N status diagnostic model for winter wheat by c... J. Lu, Z. Chen, Y. Miao, Y. Li, Y. Zhang, X. Zhao, M. Jia

41. Symposium Welcome and Introductions

... J. Lowenberg-deboer

42. How Does an Autonomous Tractor See the World

... G. Bansal

43. Transforming Row Crop Agriculture: Harnessing Computer Vision and AI for Automation and Autonomy

... A. Sharda

44. Swarm Farming is the Future

... C. Rupp

45. Evolving Nexus of Academia, Industry, and Government to Advance and Realize the Benefits of Robotics in Crop Production Agriculture

... E.M. Barnes, M. Scott, S.A. Shearer

46. Machine Vision, AI, and Robotics in Specialty Crop Production

... M. Karkee

47. Can AI and Automation Transform Specialty Crop Production?

... Y. Ampatzidis

48. Using AI to Estimate Vineyards and Vegetables Vigour and Yield

... S. Fountas

49. I Call Shotgun: Uncovering Human-System/Robot Gaps in Emerging Technologies

... Y. Salzer

50. Stakeholder Inclusion for Responsible Robotics: Who, How, and Why?

... D. Rose

51. Field Crop Robots - Adoption and Farm Level Economics

... M. Gandorfer

52. Development of a Multispectral Vision-based Automated Sweetpotato Grading System

Quality evaluation and grading of sweetpotatoes is a manual operation that requires significant labor input. Machine vision technology offers a promising solution for automated sweetpotato grading and sorting. Although color imaging is widely used for quality evaluation of various horticultural commodities, a multispectral vision technique that acquires color and near-infrared (NIR) images simultaneously is a potentially more effective modality for fruit grading, especially for defects, while... J. Xu, Y. Lu