Proceedings

Find matching any: Reset
Precision Fertilization of Horticultural Crops
Profitability and Success Stories in Precision Agriculture
Precision A to Z for Practitioners
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Weather and Models for Precision Agriculture
Add filter to result:
Authors
Abenina, M
Abukmeil, R
Adamchuk, V.I
Adhikari, K
Ahrends, H.E
Al-Gaadi, K
Alchanati, V
Alchanatis, V
Almallahi, A
Ameglio, L
Ameglio, L
Antunes de Almeida, L.F
Arias, A
Arnall, B
Ayral, J
Baumbauer, C
Beeri, O
Beeri, O
Ben-Gal, A
Bindish, R
Cabrera Dengra, M
Carcedo, A
Carlier, A
Carlier, A
Ciampitti, I
Ciampitti, I
Ciampitti, I
Cohen, Y
Cohen, Y
Colaço, A.F
Corassa, G
Cox, D
Cutulle, M
Dandrifosse, S
Dandrifosse, S
Davadant, P
DeBruin, J
Dempsey, D
Dey, S
Dey, S
Diaz, D
Dreyer, J.G
Dumont, B
Dumont, B
Dumont, B
Eberle, D
El-Mejjaouy, Y
Ennadifi, E
Everett, M
Feng, G
Ferguson, R.B
Ferraz Pueyo, C
Fleming, K
Fortes, R
Franzen, D.W
Gal, A
Gips, A
Goldshtein, E
Goldshtein, E
Goldwasser, Y
Goodrich, P
Gosselin, B
Griffin, T
Gunzenhauser, B
Hajda, C
Hefley, T
Heggemann, T.W
Hensley, R
Hernandez, C
Hernandez, C
Hintz, G.D
Hoogenboom, G
Horbe, T
Huang, Y
Huender, L
Inunciaga Leston, G
Jha, G
Jha, G
Kang, C
Karkee, M
Katz, L
Keller, M
Khosla, R
Kim, J
Kitchen, N.R
Koch, G
Krol, C
Kyveryga, P
Kyveryga, P
Lajunen, A
Lee, K
Litaor, I
Liu, H
Liu, P
Longchamps, L
Lund, E
Lund, T
Mackenzie, C
Madugundu, R
Maja, J.J
Mandal, D
Maxton, C
Mayer, W
Melgar, J
Mercatoris, B
Mercatoris, B
Mercatoris, B
Miao, Y
Molin, J.P
Molin, J.P
Moreno Heras, L
Myers, D
Nadav, I
Nagel, P
Naor, A
Nazrul, F
Nazrul, F
Nocco, M
Nunes, L
Ortiz, B
Ortiz, B.V
Oukarroum, A
Owens, P.R
Pagé Fortin, M
Pajuelo Madrigal, V
Palla, S
Pan, L
Peeters, A
Pelta, R
Pelta, R
Pott, L.P
Prasad, R
Prasad, V
Prestholt, A
PÄTZOLD, S
Ransom, C.J
Sade, Z
Sampath, N
Schelling, K
Schmidt, R
Schottle, N
Schulthess, U
Schwalbert, R.A
Schwiesow, D
Shcherbatyuk, N
Shilo, T
Shilo, T
Sihi, D
Siqueira, R.D
Smith, D.R
Stelford, M
Stettler, E
Sudduth, K
Sudduth, K.A
Sudduth, K.A
Tarshish, R
Tavares, T.R
Tola, E
Underwood, H
Velasco, J.S
Vermeulen, P
Veum, K
Veum, K.S
Vong, C
Vories, E
Walsh, M
Wehrle, R
Whitaker, B
Whitaker, B
Xiong, X
Yang, Z
Ye, D
Zhang, Q
Zhen, X
Zhou, J
Zhou, J
Zhou, J
Zhou, J
da Silva, T.R
de Carvalho, H.W
van Versendaal, E
Topics
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Precision A to Z for Practitioners
Weather and Models for Precision Agriculture
Profitability and Success Stories in Precision Agriculture
Precision Fertilization of Horticultural Crops
Type
Oral
Poster
Year
2022
2012
2024
2014
Home » Topics » Results

Topics

Filter results50 paper(s) found.

1. Beyond NDVI - Additional Benefits of RapidEye Image Products

... U. Schulthess, K. Schelling

2. The Map - Supported by New NPK-Sensors - is Intelligent, Not the Tractor

DI Walter H. Mayer   PROGIS Software GmbH   Postgasse 6, A-9500 Villach www.progis.com office@progis.com +43 4242 26332 WinGIS®-AGROffice® and BING®-maps: Since years PROGIS has been developing an object oriented GIS (WinGIS®), agriculture and forestry applications for single enterprises, for advisors, for the chain management including logistics and communication implementation with mobile GIS (mobG... W. Mayer

3. An Approach to Selection of Soil Water Content Monitoring Locations within Fields

Increased input efficiency is one of the main challenges for a modern agricultural enterprise. One way to optimize production cycles is to rationalize crop residue utilization. In conditions where there is limited use of mineral fertilizers and without applying manure, plant residues may be used as an organic fertilizer ... V.I. Adamchuk, L. Pan, R.B. Ferguson

4. The Use of Crop Sensors Beyond Nitrogen and Improving the Right to Farm

... C. Mackenzie

5. John Deere FarmSight™

Agriculture has had several revolutions in the past century, and it currently faces what may be its greatest challenge to date – population growth and the increased need for food, fiber, and fuel in the future.  To meet this challenge the agricultural industry will have to drive efficiencies to a level never seen before, within a context of several macro trends (e.g., farm sizes increasing, environmental sustainability requirements evolving).  John Deere FarmSightTM... M. Stelford

6. AMMO Ag: Agricultural Marketing & Merchandising Optimizer

EHedger provides an integrated risk management solution for farm operations utilizing our proprietary AMMO platform combined with proven hedging strategies, first-hand market insight, effective trade execution and farming expertise. AMMO software enables real-time analysis of crop/livestock production. Farmers can set profit margins, evaluate variable profit scenarios, understand production costs and risks, and create sustainable marketing programs to maximize their... C. Krol, D. Dempsey

7. Real-Time Fluorescence Sensors for Precision Agriculture

... J. Ayral

8. Raven Sponsor Presentation: Slingshot Overview

Slingshot, a suite of products and services centered around high-speed wireless connectivity in the cab ... D. Schwiesow

9. Precision Agriculture and Springer

Maryse Walsh will be presenting Precision Agriculture, the Springer journal, but also the discipline and its place in the Springer publications overall. The community attending the ICPA has a major role in ensuring the positive development of these publications and the affiliation of the journal to the ISPA will only help. ... M. Walsh

10. Raising Awareness of the Potential of Crop Sensing Technologies to Improve Environmental Stewardship

Extensive research and on-farm work using active crop sensors for input management have been conducted in the Midwest and Great Plain USA with favorable results. Contrasting is the situation in the Southeast where the adoption by farmers is still limited and current on-going research is focused on the main southeastern crops. This presentation will provide an overview of the multiple extension activities related to crop sensing involving farmers, extension agents and crop consultants in ... B. Ortiz

11. Making the Most of Precision Ag Data: Big Data in Farm Management

na ... T. Griffin

12. Davco's Journey Into Precision Sugarcane Farming

Davco's Journey Into Precision Sugarcane Farming ... D. Cox

13. Sensor Algorithms 101

This presentation will break down the algorithms used for Optical Sensor Based Nitrogen rate recommendations. The group will walk through the mechanics and agronomics behind the most commonly used equations, in order to turn the black boxes into slightly muddied waters. ... B. Arnall

14. Use of Zone or Grid Soil Nutrient Management as Part of an Integrated Site-specific Nutrient Strategy

Zone and grid sampling are used as a basis for fertilizing with nutrients site-specifically. Use of sensors to assist in-season management of nitrogen is also gaining momentum. The presentation will suggest when grid or zone sampling for preplant nutrients might be utilized and how these recommendations would be used in an integrated approach of preplant plus in-season nutrient management. ... D. Franzen

15. A Five Year Study Of Variable Rate Fertilization In Citrus

Citrus is a major crops in Brazil, especially in the São Paulo state, which is the main citrus production region in the world. Yet, site specific technology is still in early stages of adoption. Variable rate application of inputs is the most important tool in a Precision Agriculture system, however its effect on citrus agronomical aspects are still unknown, especially during long periods of observation. Thus, variable rate fertilizer application has been tested in citrus... J.P. Molin, A.F. Colaço

16. Developing Empirical Method to Estimate Phosphorous in Potato Plants Using Spectroscopy-based Approach

Application of non-destructive sensors opens a promising opportunity to provide efficient information on nutrient contents based on leaf or canopy reflectance in different crops. In potatoes, nutrient levels are estimated by conducting chemical tests for the petioles. In thinking of deploying sensors for potato nutrient estimation, it is necessary to study the spectrum based on petiole chemical testing rather than leaf chemical testing. Thus, this study aimed to investigate whether there is a... R. Abukmeil, A. Almallahi

17. On-the-go Gamma Spectrometry and Its Evaluation Via Support Vector Machines: Really a Valuable Tool for Site-independent Soil Texture Prediction?

With progressive implementation of precision agriculture (PA) techniques in current agricultural/ viticultural practice, the need for high-resolution information on soil properties at low effort and cost is increasing. Moreover, climate change and extended drought periods do even increase this demand. Evaluating soil fertility and carbon storage potential of arable fields and vineyards, e.g. for future economic assessment of ecosystem services, requires spatially resolved soil data. Soil text... S. PÄtzold, T.W. Heggemann, R. Wehrle

18. A Hyperlocal Machine Learning Approach to Estimate NDVI from SAR Images for Agricultural Fields

The normalized difference vegetation index (NDVI) is a key parameter in precision agriculture used globally since the 1970s. The NDVI is sensitive to the biochemical and physiological properties of the crop and is based on the Red (~650 nm) and NIR (~850 nm) spectral bands. It is used as a proxy to monitor crop growth, correlates to the crop coefficient (Kc), leaf area index (LAI), crop cover, and more. Yet, it is susceptible to clouds and other atmospheric conditions which might al... R. Pelta, O. Beeri, T. Shilo, R. Tarshish

19. Gamma-ray Spectrometry to Determine Soil Properties for Soil Mapping in Precision Agriculture

Soil maps are critical for various land use applications and form the basis for the successful implementation of precision agriculture in crop production. Soil maps provide the spatial distribution of important soil physical and chemical properties to a farmer. The farmer uses this information to make critical management decisions for profitable and sustainable food production. South Africa is a water scarce country where rainfall is mainly seasonal and unreliable. Under these circumstances, ... J.G. Dreyer, L. Ameglio

20. Predicting Secondary Soil Fertility Attributes Using XRF Sensor with Reduced Scanning Time in Samples with Different Moisture Content

To support future in situ/on-the-go applications using X-ray fluorescence (XRF) sensors for soil mapping, this study aimed at evaluating the XRF performance for predicting organic matter (OM), base saturation (V), and exchangeable (ex-) Mg, using a reduced analysis time (e.g., 4 s) in soil samples with different moisture contents. These attributes are considered secondary for XRF prediction because they do not present emission lines in the XRF spectrum. Ninety-nine soil samp... T.R. Tavares, J.P. Molin, T.R. Da silva , H.W. De carvalho

21. The Use of Spatial and Temporal Measures to Enhance the Sensitivity of Satellite-based Spectral Vegetation Indices to (Water) Stress in Maize Fields

Climate change and water scarcity are reducing the available irrigation water for agriculture thus turning it into a limited resource. Today calculating and estimating crop water requirements are achieved through the ETc FAO-56 model where the effect of climate on crop water requirement is determined through the water evaporation from the soil and plant (ETref), and a calendar crop coefficient (Kc). Models t... Y. Goldwasser, V. Alchanati, E. Goldshtein, Y. Cohen, A. Gips, I. Nadav

22. Organ Scale Nitrogen Map: a Novel Approach for Leaf Nitrogen Concentration Estimation

Crop nitrogen trait estimations have been used for decades in the frame of precision agriculture and phenotyping researches. They are crucial information towards a sustainable agriculture and efficient use of resources. Remote sensing approaches are currently accurate tools for nitrogen trait estimations. They are usually quantified through a parametric regression between remote sensing data and the ground truth. For instance, chlorophyll or nitrogen concentration are accurately estimated usi... A. Carlier, S. dandrifosse, B. Dumont, B. Mercatoris

23. Sun Effect on the Estimation of Wheat Ear Density by Deep Learning

Ear density is one of the yield components of wheat and therefore a variable of high agronomic interest. Its traditional measurement necessitates laborious human observations in the field or destructive sampling. In the recent years, deep learning based on RGB images has been identified as a low-cost, robust and high-throughput alternative to measure this variable. However, most of the studies were limited to the computer challenge of counting the ears in the images, without aiming to convert... S. Dandrifosse, E. Ennadifi, A. Carlier, B. Gosselin, B. Dumont, B. Mercatoris

24. Machine Learning Techniques for Early Identification of Nitrogen Variability in Maize

Characterizing and managing nutrient variability has been the focus of precision agriculture research for decades. Previous research has indicated that in-situ fluorescence sensor measurements can be used as a proxy for nitrogen (N) status in plants in greenhouse conditions employing static sensor measurements. Indeed, practitioners of precision N management require determination of in-season plant N status in real-time at field scale to enable the most efficient N fertiliz... D. Mandal, R.D. Siqueira, L. Longchamps, R. Khosla

25. Soil Variability Mapping with Airborne Gamma-ray Spectrometry and Magnetics

The knowledge of spatial distribution of agricultural soils physical and chemical properties is critical for profitable and sustainable crop and food production. The collection of soil data presents however obvious problems arising from sampling a dense, opaque and very heterogeneous medium. Conventional methods consisting of ground-based grid survey are laborious, expensive and lack appropriate spatial resolution to allow best farm management decision. Over the past 50 years, airborne geophy... L. Ameglio, E. Stettler, D. Eberle

26. Printed Nitrate Sensors for In-soil Measurements

Managing nitrate is a central concert for precision agriculture, from delineating management zones, to optimizing nitrogen use efficiency through in-season applications, to minimizing leaching and greenhouse gas emissions. However, measurement methods for in-soil nitrate are limiting. State-of-the-art soil nitrate analysis requires taking soil or liquid samples to laboratories for chemical or spectrographic analysis. These methods are accurate, but costly, labor intensive, and cover limited g... C. Baumbauer, P. Goodrich, A. Arias

27. Comparison of Canopy Extraction Methods from UAV Thermal Images for Temperature Mapping: a Case Study from a Peach Orchard

Canopy extraction using thermal images significantly affects temperature mapping and crop water status estimation. This study aimed to compare several canopy extraction methodologies by utilizing a large database of UAV thermal images from a precision irrigation trial in a peach orchard. Canopy extraction using thermal images can be attained by purely statistical analysis (S), a combination of statistical and spatial analyses (SS), or by synchronizing thermal and RGB images, following RGB sta... L. Katz, A. Ben-gal, I. Litaor, A. Naor, A. Peeters, E. Goldshtein, V. Alchanatis, Y. Cohen

28. Investigating the Potential of Visible and Near-infrared Spectroscopy (VNIR) for Detecting Phosphorus Status of Winter Wheat Leaves Grown in Long-term Trial

The determination of plant nutrient content is crucial for evaluating crop nutrient removal, enhancing nutrient use efficiency, and optimizing yields. Nutrient conventional monitoring involves colorimetric analyses in the laboratory; however, this approach is labor-intensive, costly, and time-consuming. The visible and near-infrared spectroscopy (VNIR) or hyperspectral non-imaging sensors have been an emerging technology that has been proved its potential for rapid detection of plant nutrient... Y. El-mejjaouy, B. Dumont, A. Oukarroum, B. Mercatoris , P. Vermeulen

29. Toward Smart Soybean Variety Selection Using UAV-based Imagery and Machine Learning

The efficiency of crop breeding programs is evaluated by the genetic gain of a primary trait of interest, e.g., yield and resilience to stress, achieved in one year through artificial selection of advanced breeding materials. Conventional breeding programs select superior genotypes using the primary trait (yield) based on combine harvesters, which is labor-intensive and often unfeasible for single-row progeny trials due to their large population, complex genetic behavior, and high genotype-en... J. Zhou, J. Zhou

30. Use of MLP Neural Networks for Sucrose Yield Prediction in Sugarbeet

INTRODUCTION Sugar beet is one of the more technified agro industries in Spain. In the last years, it has leaded as well the digital transformation with the objective of maintaining sugar beet competitivity both national and internationally. Among other lines, very high potential has been identified in determining the sucrose content using a combination of Artificial Intelligence and Remote Sensing. This work presents the conclusions of an extensive data acquisition task, creation o... M. Cabrera dengra, C. Ferraz pueyo, V. Pajuelo madrigal, L. Moreno heras, G. Inunciaga leston, R. Fortes

31. You Can Not Manage What You Dont Measure

The problem of variability in soil nutrient analysis has been studied for years by a number of industry experts; unable to decipher and commercialize hyperspectral soil sensing. Many studies have taken years of testing to account for variability thathas a dramatic impacts on precision of recommendations. The main tradeoff we have identified is between accuracy and precision. Large quantities of raw data are requir... K. Fleming, N. Schottle, P. Nagel, G. Koch

32. Estimating Soil Carbon Stocks with In-field Visible and Near-infrared Spectroscopy

Agricultural lands can be a sink for carbon and play an important role in offsetting carbon emissions. Current methods of measuring carbon sequestration—through repeated temporal soil samples—are costly and laborious. A promising alternative is using visible, near-infrared (VNIR) diffuse reflectance spectroscopy. However, VNIR data are complex, which requires several data processing steps and often yields inconsistent results, especially when using in situ VNIR measurements. Using... C.J. Ransom, C. Vong, K.S. Veum, K.A. Sudduth, N.R. Kitchen, J. Zhou

33. Analytical and Technological Advancements for Soybean Quality Mapping and Economic Differentiation

In the past, measuring soybean protein and oil content required the collection of soybean seed samples and laboratory analyses. Modern on-the-go near-infrared (NIR) sensing technologies during the harvest and proximal remote sensing (aerial and satellite imagery) before harvest time can be used to provide an early estimate of seed quality levels, benchmark in-season predictions with at-harvest final seed quality and enable seed differentiation for farmers leading to better marketing strategie... A. Prestholt, C. Hernandez, I. Ciampitti , P. Kyveryga

34. Hay Yield Estimation Using UAV-based Imagery and a Convolutional Neural Network

Yield monitoring systems are widely used commercially in grain crops to map yields at a scale of a few meters. However, such high-resolution yield monitoring and mapping for hay and forage crops has not been commercialized. Most commercial hay yield monitoring systems only obtain the weight of individual bales, making it difficult to map and understand the spatial variability in hay yield. This study investigated the feasibility of an unmanned aerial vehicle (UAV)-based remote sensing system ... K. Lee, K.A. Sudduth, J. Zhou

35. Diagnosis of Grapevine Nutrient Content Using Proximal Hyperspectral Imaging

Nutrient deficiencies on grapevines could affect the fruit yield and quality, which is a major concern in vineyards. Nutrient deficiencies may be recognizable by foliar symptoms that vary by mineral nutrient and stress severity, but it is too late to manage when visible deficiency symptoms become apparent. The nutrient analysis in the laboratory is the way to get an accurate result, but it is time and cost-intensive. The differences in leaf nutrient levels also alter spectral characteristics ... C. Kang, M. Karkee, Q. Zhang, N. Shcherbatyuk, P. Davadant, M. Keller

36. Snap-shot Hyperspectral Camera for Potassium Prediction of Peach Trees Using Multivariate Analysis

Hyperspectral imaging (HSI) is an emerging technology being utilized in agriculture. This system could be used to monitor the overall health of plants or pest disease detection. As sensing technology advances, measuring nutrient levels and disease detection also progresses. This study aimed to predict the levels of potassium (K) content in peach leaves with the new snapshot hyperspectral camera. The study was conducted at the Clemson University Musser Fruit Research Farm (Seneca, SC, USA, 34.... J.J. Maja, M. Abenina, M. Cutulle, J. Melgar, H. Liu

37. Impact of Cover Crop and Soil Apparent Electrical Conductivity on Cotton Development and Yield

Cotton is one of the major crops in the New Madrid Seismic Zone (NMSZ) of the U.S. Lower Mississippi River Valley region. Because cotton production doesn’t leave a lot of crop residue in the field, low soil organic matter levels are common. While the benefits of crop rotation are well known, cotton is often grown year after year in the same fields for economic reasons. Soils in the region are generally quite variable, with areas of very high sand content. Winter cover crops and reduced ... E. Vories, K. Veum, K. Sudduth

38. Measuring Soil Carbon with Intensive Soil Sampling and Proximal Profile Sensing

Soils have a large carbon storage capacity and sequestering additional carbon in agricultural fields can reduce CO2 levels in the atmosphere, helping to mitigate climate change. Efforts are underway to incentivize agricultural producers to increase soil organic carbon (SOC) stocks in their fields using various conservation practices.  These practices and the increased SOC provide important additional benefits including improved soil health, water quality and – in some cases –... E. Lund, T. Lund, C. Maxton

39. Multi-sensor Imagery Fusion for Pixel-by-pixel Water Stress Mapping

Evaluating water stress in agricultural fields is fundamental in irrigation decision-making, especially mapping the in-field water stress variability as it allows real-time detection of system failures or avoiding yield loss in cases of unplanned water stress. Water stress mapping by remote sensing imagery is commonly associated with the thermal or the short-wave-infra-red (SWIR) bands. However, integration of multi-sensors imagery such as radar imagery or sensors with only visible and near-i... O. Beeri, R. Pelta, Z. Sade, T. Shilo

40. Functional Soil Property Mapping with Electrical Conductivity, Spectral and Satellite Remote Sensors

Proximal electrical conductivity (EC) and spectral sensing has been widely used as a cost-effective tool for soil mapping at field scale. The traditional method of calibrating proximal sensors for functional soil property prediction (e.g., soil organic matter, sand, silt, and clay contents) requires the local soil sample data, which results in a field-specific calibration. In this large-scale study consisting of 126 fields, we found that the traditional local calibration method had suffered w... X. Xiong, D. Myers, J. Debruin, B. Gunzenhauser, N. Sampath, D. Ye, H. Underwood, R. Hensley

41. Proximal Sensing of Penetration Resistance at a Permanent Grassland Site in Southern Finland

Proximal soil sensing allows for assessing soil spatial heterogeneity at a high spatial resolution. These data can be used for decision support on soil and crop agronomic management. Recent sensor systems are capable of simultaneously mapping several variables, such as soil electrical conductivity (EC), spectral reflectance, temperature, and water content, in real-time. In autumn 2021, we used a commercial soil scanner (Veris iScan+) to derive information on soil spatial variability for a per... H.E. Ahrends, A. Lajunen

42. Employment of the SSEB and CROPWAT Models to Estimate the Water Footprint of Potato Grown in Hyper-arid Regions of Saudi Arabia

Quantifying crops’ water footprint (WF) is essential for sustainable agriculture especially in arid regions, which suffers from harsh environmental conditions and severe shortage of freshwater resources such as Saudi Arabia. In this study, WF of irrigated potato crop was estimated for the implementation of precision agriculture techniques. The CROPWAT and the Simplified Surface Energy Balance (SSEB) approaches were adopted. Soil, plant, and yield samples were randomly collected from six... R. Madugundu, K. Al-gaadi, E. Tola

43. Mapping Soil Health and Grain Quality Variations Across a Corn Field in Texas

Soil health is a key property of soils influencing grain yield and quality. Within-field mapping of soil health index and grain quality can help farmers and managers to adjust site-specific farm management decisions for economic benefits. A study was conducted to map within-field soil health and grain protein and oil content variations using apparent electrical conductivity (ECa) and terrain attributes as their predictors. Two hundred and two topsoil samples were analyzed to determine soil he... K. Adhikari, D.R. Smith, C. Hajda, P.R. Owens

44. Prediction of Field-scale Evapotranspiration Using Process Based Modeling and Geostatistical Time-series Interpolation

Irrigation scheduling depends on the combination of evaporative demand from the atmosphere, spatial and temporal heterogeneity in soil properties and changes in crop canopy during a growing season. This on-farm trial is based on data collected in 72-acre processing tomato field in Central Valley of California. The Multiband Spectrometric Arable Mark 2 sensors at three different locations in the field. Multispectral and thermal imagery provided by Ceres Imaging were collected eight times durin... G. Jha, F. Nazrul, M. Nocco, M. Pagé fortin, B. Whitaker, D. Diaz, A. Gal, R. Schmidt

45. Assessing Soybean Water Stress Patterns and ENSO Occurrence in Southern Brazil: an in Silico Approach

Water stress (WS) is one of the most important abiotic stresses worldwide, responsible for crop yield penalties and impacting food supply. The frequency and intensity of weather stresses are relevant to delimitating agricultural regions. In addition, El Nino Southern Oscillation (ENSO) has been employed to forecast the occurrence of seasonal WS. Lastly, planting date and cultivar maturity selection are key management strategies for boosting soybean (Glycine max (L.) Merr.) y... A. Carcedo, L.F. Antunes de almeida, T. Horbe, G. Corassa, L.P. Pott, I. Ciampitti, G.D. Hintz, T. Hefley, R.A. Schwalbert, V. Prasad

46. Evaluating the Potential of In-season Spatial Prediction of Corn Yield and Responses to Nitrogen by Combining Crop Growth Modeling, Satellite Remote Sensing and Machine Learning

Nitrogen (N) is a critical yield-limiting factor for corn (Zea mays L.). However, over-application of N fertilizers is a common problem in the US Midwest, leading to many environmental problems. It is crucial to develop efficient precision N management (PNM) strategies to improve corn N management. Different PNM strategies have been developed using proximal and remote sensing, crop growth modeling and machine learning. These strategies have both advantages and disadvantages. There is... X. Zhen, Y. Miao, K. Mizuta, S. Folle, J. Lu, R.P. Negrini, G. Feng, Y. Huang

47. Spatio-temporal Variability of Intra-field Productivity Using Remote Sensing

Understanding the spatiotemporal variability in intra-farm productivity is crucial for management in making agronomic decisions. Furthermore, these decision-making processes can be enhanced using spatial data science and remote sensing. This study aims to develop a framework to asses the spatio-temporal variability of intra-farm productivity through historical satellite data and climate data. Historical satellite data and rainfall information from diverse fields across the United States (2016... E. Van versendaal, C. Hernandez, P. Kyveryga, I. Ciampitti

48. Machine Learning Algorithms in Detecting Long-term Effect of Climatic Factors for Alfalfa Production in Kansas

The water levels of the Ogallala Aquifer are depleting so much that agricultural land returns in Kansas are expected to drop by $34.1 million by 2050. It is imperative to understand how frequent droughts and the contrasting rates of groundwater withdrawal and recharge are affected by climate shifts in Kansas. Alfalfa, the ‘Queen of Forages’, is a water demanding crop which supplies high nutritional feed for beef industry that offered Kansas producers a $500 million production valu... F. Nazrul, J. Kim, S. Dey, S. Palla, D. Sihi, B. Whitaker, G. Jha

49. Dimensionality Reduction and Similarity Metrics for Predicting Crop Yields in Sparse Data Microclimates

This study explores and develops new methodologies for predicting agricultural outcomes, such as crop yields, in microclimates characterized by sparse meteorological data. Specifically, it focuses on reducing the dimensionality in time series data as a preprocessing step to generate simpler and more explainable forecast models. Dimensionality reduction helps in managing large data sets by simplifying the information into more manageable forms without significant loss of information. We explor... L. Huender, M. Everett

50. Using Simulation Modeling to Evaluate the Corn Response to Deficit Irrigation Imposed During Reproductive Period

In Alabama, as in many regions of the southeastern states, flash droughts and rising temperatures present significant challenges to the sustainability of agricultural systems. Specifically maize, a crop with a high water demand, faces production risks due to these adverse conditions. The study explores the optimum irrigation scheduling strategies on maize (Zea mays L.) in the reproductive growth stages through the evaluation of the impact of three irrigation treatments, defined by Maximum All... J.S. Velasco, B.V. Ortiz, L. Nunes, R. Prasad, G. Hoogenboom