Proceedings
Topics
| Filter results39 paper(s) found. |
|---|
1. Precision Weed Management Research Advancement In The Near EastPrecision weed control research received considerable attention since the introduction of global positioning systems (GPS). GPS and geographic information systems (GIS) technologies may assist with field monitoring, particularly; in deciding what weed species to monitor? What weed densities are bypassing critical thresholds? and where? While advancements in precision agricultural research could be detected through the intensive publications in the developed world,... H. Ghosheh |
2. Road Map For Precision Agriculture In The Punjab, North-west IndiaAgricultural experimentation is both expensive and time consuming. It is necessary to reduce site-specific research and capitalize on the agricultural experience gained elsewhere by using soil maps and GIS-GPS (Geographic Information System - Global Positioning System) technology. Since in an agro-eco-subregion, soils in the same family require essentially the same management practices, maximum production results obtained in one soil family can be used as production targets for all soils belo... R. Kumar |
3. Precision Agriculture In New Zealand’s Farming SystemsTo date New Zealand farmers do not realize how involved they are in Precision Agriculture (PA). As arable farmers we know how many kilograms of nitrogen (N) it takes to grow a tonne of wheat, how many kilograms of seed we can produce for every millimetre of water that is applied (through irrigation and/or rainfall) and yet we don’t believe we are involved in PA. As dairy farmers we are matching feed requirements to the specific production level of individual cows. We ar... C. Mackenzie, C. Mackenzie |
4. Worldwide Adoption Of Precision Agriculture Technology: The 2010 UpdatePrecision agriculture technology has been on the market for nearly two decades; and the question remains regarding how and to what extent farmers are making the best use of the technology. Yield monitors, GPS-enabled guidance technology, farm-level mapping and GIS software, on-the-go variable rate applications, and other spatial technologies are being used by thousands of farmers worldwide. The USDA Agricultural Resource Management Survey (ARMS) and the annual CropLife/Purdue University Preci... T. Griffin, J. Lowenberg-deboer |
5. Land Information System Of Precision Farming In Mongolia Using Remote Sensing And Geographical Information SystemRemote sensing (RS) and geographic information system (GIS) technologies have been of great use to planners in planning for efficient use of natural resources at national, sub region and rural levels. RS can be used for precision farming in a number of ways for providing input supplies and variability management through decision support system. GIS is the principal technology used to integrate spatial data... B. Erdenee, B. Batbayar, R. Tateishi |
6. Is Precision Agriculture Feasible In Cocoa Production In Ghana? : The Case Of Cocoa High Technology Programme In The Eastern Region Of GhanaGhana is the second largest producer of cocoa in the world supplying 25% of the world’s cocoa, thus cocoa production contributes significantly to the economy of ... M. Bosompem, J.A. Kwarteng, E. Ntifo-siaw |
7. Application based Wireless Sensor Node for Underground Moisture Sensing for Precision AgricultureIn this paper, we are attempting to examine the WUWSN (wireless underground water sensor node*) for precision agriculture. The development and function of this sensor along with its software application is described in this paper. The equipment is under testing and the laboratory results and interpretations are discussed in this paper. This equipment is based on the new concept of sensing underground soil moisture. The sensor is cost effective sensor and has a lon... S.P. Nayse, A.S. Mohammad |
8. Rapidscan And CropCircle Radiometers: Opportunities And Limitation In Assessing Wheat Biomass And NitrogenRemote sensing is a promising technology that provides information about the crop's physiological and phenological status. This information is based on the spectral absorption and scattering features of the plants. Many different vegetation indices (VI) have been developed, and are in use to estimate quantitatively the relationship between multi and hyper-spectral reflectance and effective crop physiological parameters, i.e. nitrogen (N) content, biomass, leaf area index (LAI). The C... A.A. Gitelson, D.J. Bonfil |
9. Active Optical Sensor Algorithms For Corn Yield Prediction And In-Season N Application In North DakotaA recent series of seventy seven field N rate experiments with corn (Zea mays, L.) in North Dakota was conducted. Multiple regression analysis of the characteristics of the data set indicated that segregating the data into those with high clay soils and those with medium textures increased the relationship between N rate and corn yield. However, the nearly linear positive slope relationship in high clay soils and coarser texture soils with lower yield productivity indic... L. Sharma, H. Bu, R. Ashley, G. Endres, J. Teboh, D.W. Franzen |
10. In-Season Nitrogen Requirement For Maize Using Model And Sensor-Based Recommendation ApproachesNitrogen (N), an essential element, is often limiting to plant growth. There is great value in determining the optimum quantity and timing of N application to meet crop needs while minimizing losses. Low nitrogen use efficiency (NUE) has been attributed to several factors including poor synchrony between N fertilizer and crop demand, unaccounted for spatial variability resulting in varying crop N needs, and temporal variances in crop N needs. Applying a portion... L.J. Stevens, R.B. Ferguson, D.W. Franzen, N.R. Kitchen |
11. Modeling Canopy Light Interception For Estimating Yield In Almond And Walnut TreesA knowledge of spatio-temporal variability in potential yield is essential for site-specific nutrient management in crop production. The objectives of this project were to develop a model for photosynthetically active radiation (PAR) intercepted by almond and walnut trees based on data obtained from respective tree(s) and estimate potential crop yield in individual trees or in blocks of five trees. This project uses proximally sensed PAR interception data measured using a lightb... R. Dhillon, S. Upadhyaya, J. Roach, K. Crawford, B. lampinen, S. Metcalf, F. Rojo |
12. Using Precision Agriculture And Remote Sensing Techniques To Improve Genotype Selection In A Breeding ProgramPrecision Agriculture (PA) and Remote Sensing (RS) technologies are increasingly being used as tools to assess crop and soil properties by breeders and physiologists. These technologies are showing potential to improve genotype selections over their traditional field measurements, by providing quick access to crop properties throughout the crop cycle and yield estimation. The objective of this work was to use vegetation indices (VIs) and soil apparent electrical conductivi... F.A. Rodrigues junior, I. Ortiz-monasterio, P.J. Zarco-tejada, K. Ammar, B.G. Gérard |
13. Development Of An Index-Based Insurance Product: Validation Of A Forage Production Index Derived From Medium Spatial Resolution fCover Time SeriesAn index-based insurance solution is developed by Pacifica Crédit Agricole Assurances and Astrium GEO-Information to estimate and monitor the near real-time forage production in France. In this system, payouts are indexed on an indicator, called Forage Production Index (FPI), calculated using a biophysical characterization of the grassland from medium spatial resolution remote sensing time series. We used the Fraction of green Vegetation Cover (fCover) integral ... A. Jacquin, G. Sigel, O. Hagolle, B. Lepoivre, A. Roumiguié, H. Poilvé |
14. Detection Of Drainage Failure In Reconstructed Cranberry Soils Using Time Series AnalysisA cranberry farm is often a semi-closed water system, where water is applied by means of irrigation and drained using an artificial drainage system. Cranberry bogs must be drained to the water level inside the surrounding ditches in order to maintain an optimal pore pressure within the root zone, which is important for a number of reasons. First of all, Phytophthara causing root rot are commonly associated with irrigation with contaminated surface water (Oudemans, 1999)... S.J. Gumiere, Y. Périard, J. Caron, D.W. Hallema, J.A. Lafond |
15. Comparison Of Calibration Models Developed For A Visible-Near Infrared Real-Time Soil SensorThe visible-near infrared (Vis-NIR) based real-time soil sensor (RTSS) is found to be a great tool for determining distribution of various soil properties for precision agriculture purposes. However, the developed calibration models applied on the collected spectra for prediction of soil properties were site-specific (local). This is found to be less practical since the RTSS needs to be calibrated separately for every field. General calibration approach is expected to ... S. Shibusawa, M. Kodaira, I. Kana, S.N. Baharom |
16. Cotton Field Relations Of Plant Height To Biomass Accumulation And N-Uptake On Conventional And Narrow Row SystemsAlthough studied for decades, cotton field management remains a challenge for growers, especially due to spatial variability of soil conditions and crop growth, which demands the use of variable rate application technology (VRT) for nitrogen and growth regulators to improve yields and quality and/or save inputs. Canopy optical reflectance sensors are being studied as an option to detect infield variability but may have some limitations due to the known effect of signal saturation when us... N. . Vilanova jr., J.P. Molin, C. Portz, L.V. Posada, G. Portz, R.G. Trevisan |
17. X-Ray Computed Tomography For State Of The Art Plant And Root AnalysisDuring the last years, the formerly in medical applications established technique of X-ray computed tomography (CT) is used for non-destructive material analysis as well. Adapting this technique for the visualization and analysis of growth processes of plants above and underneath the soil enables new possibilities in the so called smart agriculture. Using State-of-the-art CT systems the computed 3D volume datasets allows the visualization and virtual analysis of hidden structures like ro... S. Reisinger, N. Uhlmann, R. Hanke, S. Gerth |
18. Evaluation Of In-Field Sensors To Monitor Nitrogen Status In SoybeanIn recent years, active optical crop sensors have been gaining importance to determine in-season nitrogen (N) fertilization requirements for on-the-go variable rate application. Although most of these active in-field crop sensors have been evaluated in corn and wheat crops, they have not yet been evaluated in soybean production systems in North Dakota. Recent research from both South Dakota and North Dakota indicate that in-season N application in soybean can increase soybean yield... J. Nowatzki, S. Bajwa, S. Sivarajan, M. Maharlooei, H. Kandel |
19. Crop Circle Sensor-Based Precision Nitrogen Management Strategy For Rice In Northeast ChinaGreenSeeker (GS) sensor-based precision N management strategy for rice has been developed, significantly improved N fertilizer use efficiency. Crop Circle ACS-470 (CC) active sensor is a new user configurable sensor, with a choice of 6 possible bands. The objectives of this study were to identify important vegetation indices obtained from CC sensor for estimating rice yield potential and rice responsiveness to topdressing N application and evaluate their potential improvements over GS no... Q. Cao, Y. Miao, J. Shen, S. Cheng, R. Khosla, F. Liu |
20. Design And Construction Of An Ultrasonic Cutting Width Sensor For Full-Feed Type Mid-Sized Multi-Purpose CombinesPrecision agriculture analyzes the spatial variability according to the characteristics of an optimum setting of agricultural materials. To raise the profitability of agriculture and to reduce the environmental impact, technological research and development of precision agriculture has been conducted. In Asian countries such as Ja... Y. Huh, S. Chung, Y. Chae, J. Lee, S. Kim, M. Choi, K. Jung |
21. Design And Implementation Of Agricultural Sensor Data Of Multiple And Heterogeneous Access ArchitectureFor the moment, the Internet of things system oriented to the whole industry chain is gradually established in some fields of agriculture; At the same time, traditional management style of agricultural sensor data lack effective sharing mechanism, that can not meet the demand of agricultural network system for the multiple and heterogeneous sensor data. Especially with the growing the demand of agricultural products quality safety supervision system to the monitoring of agricult... T. Chen, D. Chen, J. Dong, S. Jiang |
22. Towards Automated Pneumatic Thinning Of Floral Buds On Pear TreesThinning of pome and stone fruit is an important horticultural practice that is used to enhance fruit set and quality by removing excess floral buds. As it is still mostly conducted through manual labor, thinning comprises a large part of a grower’s production costs. Various thinning machines developed in recent years have clearly demonstrated that mechanization of this technique is both feasible and cost effective. Generally, these machines still lack sufficient selectivi... N. Wouters, R. Van beers, B. De ketelaere, T. Deckers, J. De baerdemaeker, W. Saeys |
23. Using Imagery As A Proxy Yield Map And Scouting ToolCombine yield maps represent a post-mortem quantification of the spatial variability in crop vigor that occurred during the growing season. The spatial resolution of yield maps is defined by the width of the combine header but the length of the cell depends on the ground-speed of the implement and how long it takes for the grain t... J.S. Schepers, A.R. Schepers |
24. Seeding and Planting Plots for Crop Performance Evaluation Using Gps-rtk Auto SteeringCrop performance evaluation plots are seeded both on and off the University of Nebraska West Central Research and Extension Center. Plots off the Center must match the producer’s rows for pesticide application, cultivation, ditching, irrigation, fertilization and any other operations performed in the fields. With row crops the producer blank-plants the plot area before we can follow up with planting the plots. This means that we have to wait for the producer to plant in the field. Blank... R.N. Klein, J.A. Golus, A.S. Cox |
25. SmartAgriHubs FIE20 - Groundwater and Meteo Sensors and Earth Observation for Precision AgricultureThe solution developed under the SmartAgriHubs project in the scope of the Flagship Innovation Experiment FIE20 Groundwater and meteo sensors is an expert system to support farmers in decision-making process and planning process of field interventions. This FIE20 solution integrates various data sources and different analytical processes in a complete system and provides users an easy-to-use web map application as a common user interface. The FIE20 system integrates components developed durin... K. Charvat, M. Kepka, R. Berzins, F. Zadrazil, D. Langovskis, M. Musil |
26. Soil Moisture Variability on Golf Course Fairways Across the United States: an Opportunity for Water Conservation with Precision IrrigationFairways account for an average of 11.3 irrigated hectares on each of the 15,000+ golf courses in the US. Annual median water use per hectare on fairways is between ~2,800,000 and 14,000,000 liters, depending on the region. Conventional fairway irrigation relies on visual observation of the turfgrass, followed by secondary considerations of short-term weather forecasts, which oftentimes lead to “blanket” applications to the entire area. The concept of precision irrigation is a str... C. Straw, C. Bolton, J. Young, R. Hejl, J. Friell, E. Watkins |
27. Can Topographic Indices Be Used for Irrigation Management Zone DelineationSoil water movement is affected by soil physical properties and field terrain changes. The identification of within-field areas prone to excess or deficit of soil moisture could support the implementation of variable rate irrigation and adoption of irrigation scheduling strategies. This study evaluated the use of the topographic wetness index (TWI) and topographic position index (TPI) to understand and explain within-field soil moisture variability. Volumetric water content (VWC) collected in... B.V. Ortiz, B.P. Lena, F. morlin , G. Morata, M. Duarte de val, R. Prasad, A. Gamble |
28. Investigation of Automated Analysis of Snowmelt from Time-series Sentinel 2 Imagery to Inform Spatial Patterns of Spring Soil Moisture in the American Mountain WestVariable rate irrigation of crops is a promising approach for saving water whilst maintaining crop yields in the semi-arid American Mountain West – much of which is currently experiencing a mega drought. The first step in determining irrigation zones involves characterizing the patterns of spatial variation in soil moisture and determining if these are relatively stable temporally in relation to topographic features and soil texture. Characterizing variable rate irrigation zones is usua... I. Turner, R. Kerry, R. Jensen, E. Woolley, N. Hansen, B. Hopkins |
29. Establishing the First Soil Water Characteristics Curve for the Soils of Prince Edward Island, CanadaSoil water characteristics curve (SWCC), for Prince Edward Island (PEI), is much more needed currently for the sustainable production of agriculture yields. It will not only fulfil the requirements of the province’s farmers for irrigation scheduling but also help the government to decide about permitting the use of groundwater for supplemental irrigation on the island. A soil water characteristics curve in PEI does not exist to support precision agriculture practices. Precision ir... S.J. Cheema, A.A. Farooque, F. Abbas, T. Esau, K. Grewal |
30. Evaluating the Potential of Integrated Precision Irrigation and Nitrogen Management for Corn in MinnesotaThe environmental impact of irrigated agriculture on ground and surface water resources in Minnesota is of major concern. Previous studies have focused on either precision irrigation or precision nitrogen (N) management, with very limited studies on the integrated precision management of irrigation and N fertilizers, especially in Minnesota. The Dualex Scientific sensor is a leaf fluorescence sensor that has been used to diagnose crop&nbs... A. Elvir flores, Y. Miao, V. Sharma, L. Lacerda |
31. Spatial Analysis of Soil Moisture and Turfgrass Health to Determine Zones for Spatially Variable Irrigation ManagementThe Western United States is currently experiencing a “Mega Drought”. This makes efficient water use more important than ever. Turfgrass is a major vegetation type in urban areas and performs many ecosystem services such as cooling through evapotranspiration, fixing carbon from the atmosphere and reducing wild-fire risk. There are now more acres of irrigated turfgrass (>40 million) in the USA than irrigated corn, wheat and fruit trees combined (Milesi et al., 2005). It has been... R. Kerry, S. Shumate, B. Ingram, K. Hammond, D. Gunther, R. Jensen, S. Schill, N. Hansen, B. Hopkins |
32. In-season Nitrogen Prediction Evaluation Using Airborne Imagery with AI Techniques in Commercial Potato ProductionIn modern agriculture, timely and precise nitrogen (N) monitoring is essential to optimize resource management and improve trade benefits. Potato (Solanum tuberosum L.) is a staple food in many regions of the world, and improving its production is inevitable to ensure food security and promote related industries. Traditional methods of assessing nitrogen are labour-intensive, time-consuming, and require subjective observations. To address these limitations, a combination of multispec... B. Javed, A. Cambouris, M. Duchemin, L. Longchamps, P.S. Basran, S. Arnold, A. Fenech, A. Karam |
33. Securing Agricultural Imaging Data in Smart Agriculture: a Blockchain-based Approach to Mitigate Cybersecurity Threats and Future InnovationsSmart agriculture (SA) is a new technology that combines the Internet of Things (IoT) with a variety of smart devices, such as drones, unmanned ground vehicles (UGVs), and computer systems. The integration of technology improvements in SA has led to an increase in cybersecurity concerns, specifically pertaining to the protection of sensitive agricultural image data. It’s necessary to better understand SA network systems; establish stronger network structures; identify different types an... M. Alahe, S. Gummi, J.O. Kemeshi, Y. Chang |
34. X-ray Imaging in Breeding and Harvesting ProcessesThe application of X-ray technology has a long tradition in different medical and technical fields. Compared to other sensor systems, its advantages lie in the capability to reveal structures within objects non-destructively. The analysis of X-ray images with image processing methods is applied for quality control, the detection of foreign objects or damages and other anomalies (e.g. in organs or bones). Until recently, the application of X-ray was mainly constrained to stationary application... M. Weule, E. Hufnagel, J. Claussen, A. Berghaus, S. Burkhart, P. Noack, S. Gerth |
35. Emerging Megatrends of Sustainable Nutrient Management Research in Sub-saharan AfricaAfrica has the 12th highest population growth rates in the world, which may double by 2050; and have bio-physical constraints which impinge on development, that need to be addressed. This ever-increasing human population demands corresponding increase in food production, where low nutrient use and management is a critical challenge. Most research conducted by African scientists are rarely used in decision-making, because they are not properly aligned with the needs of decision-makers due to w... V. Aduramigba-modupe, K. Frimpong |
36. AgGateway Traceability API – The Foundation to Track Raw Agricultural CommoditiesThere is increasing demand for food traceability, ranging from consumers wanting to know where their food comes from (GMO, organic, climate-smart commodities), to manufacturers of agricultural inputs wanting to know the effectiveness of their products as used by farmers. Existing traceability requirements focus on the supply chain of goods packaged from their origin to retail grocery stores, with regulations provided by the Food Safety Modernization Act (FSMA) from the US Food and Drug Admini... S.T. Nieman, J. Tevis, B.E. Craker |
37. Within Field Cotton Yield Prediction Using Temporal Satellite Imagery Combined with Deep LearningCrop yield prediction at the field scale plays a pivotal role in enhancing agricultural management, a vital component in addressing global food security challenges. Regional or county-level data, while valuable for broader agricultural planning, often lacks the precision required by farmers for effective and timely field management. The primary obstacle in utilizing satellite imagery to forecast crop yields at the field level lies in its low temporal and spatial resolutions. This study aims t... R. Karn, O. Adedeji, B.P. Ghimire, A. Abdalla, V. Sheng, G. Ritchie, W. Guo |
38. The Evaluation of Spatial Response to Potassium in SoybeansIn agriculture, the nutrients that are in the largest demand are nitrogen (N), phosphorus (P), and potassium (K), as product demand increases so does demand for fertilizers. In the case of potassium, most soils can provide potassium in amounts that exceed crop demand; however the potassium within the soil is not always readily available to the crop, this leads to producers apply potassium to their crops even though soil tests suggests otherwise. One such crop where potassium is in deman... S. Akin, B. Arnall |
39. Biochar Synthesis, Its Impact on Different Soils and Canola GrowthBiochar has been demonstrated as a soil amendment to improve soil health and plant yield. The present study aimed at investigating the potential of wheat straw on canola morphology and yield grown in different soils. The influence of biochar on soil physical and chemical properties was also assessed..Biochar was prepared by pyrolysis of wheat straw in a fixed-bed reactor. Crushed wheat straw was loaded into the reactor in an N2 environment, and the heating was continued up to... M. Hassan |