Proceedings

Find matching any: Reset
Vegetative Indices in Crop Production
Precision Fertilization of Horticultural Crops
Profitability and Success Stories in Precision Agriculture
Precision Management / Precision Conservation
Robotics, Guidance and Automation
Sensor Application in Managing In-season Crop Variability
Application of Granular Materials with Drones
Add filter to result:
Authors
Adamchuk, V.I
Alves, F
Asido, S
Barnes, E
Bastos, L
Batbayar, E
Bean, M
Belmont, K
Boatswain Jacques, A.A
Bonfil, D.J
Cabrera Dengra, M
Camberato, J
Carter, P
Choi, D
Chung, K
Clark, J.J
Cloutier, G
Colaço, A.F
Cullop, J
Devine, J
Diago, M
Drew, P
Ehsani, R
Ferguson, R.B
Ferguson, R.B
Ferguson, R.B
Fernandez, F.G
Ferraz Pueyo, C
Fleming, K
Fortes, R
Franzen, D.W
Fulton, J.P
Glewen, K
Griffin, T.W
Gutierrez, S
Ham, W
Hatfield, J.L
Ibendahl, G
Inunciaga Leston, G
Jasper, J
Khanal, S
Kitchen, N
Kitchen, N
Koch, G
Krienke, B
Laboski, C
Lee, W
Lee, W
Li, Y
Liu, C
Liu, X
Long, D.S
Lu, J
Luck, J
Lugli, L.C
McClintick-Chess, J
McGlinch, G
Miller, C
Molin, J.P
Molin, J.P
Molin, J.P
Moreno Heras, L
Mufradi, I
Munkhbayar, S
Nafziger, E
Nagel, P
Ortez, O
Oyumaa, M
Pajuelo Madrigal, V
Parrish, J
Porto, A.J
Portz, G
Pourreza, A
Prueger, J.H
Ransom, C.J
Rial-Lovera, K
Ritenour, M.A
Roberts, P
Roka, F.M
Rovira-Más, F
Sadler, E
Saiz-Rubio, V
Sanaei, A
Sawyer, J
Scharf, P
Schottle, N
Schueller, J.K
Shanahan, J
Shannon, K
Shockley, J
Spekken, M
Sudduth, K
Sudduth, K.A
Tardaguila, J
Thomas, A.D
Thompson, L
Tronco, M.L
Tsogt-Ochir, S
Tumenjargal, E
Walsh, O.S
Zhang, Y
Topics
Robotics, Guidance and Automation
Precision Management / Precision Conservation
Sensor Application in Managing In-season Crop Variability
Profitability and Success Stories in Precision Agriculture
Precision Fertilization of Horticultural Crops
Application of Granular Materials with Drones
Vegetative Indices in Crop Production
Type
Oral
Poster
Year
2018
2008
2016
2022
2014
2024
Home » Topics » Results

Topics

Filter results24 paper(s) found.

1. A Five Year Study Of Variable Rate Fertilization In Citrus

Citrus is a major crops in Brazil, especially in the São Paulo state, which is the main citrus production region in the world. Yet, site specific technology is still in early stages of adoption. Variable rate application of inputs is the most important tool in a Precision Agriculture system, however its effect on citrus agronomical aspects are still unknown, especially during long periods of observation. Thus, variable rate fertilizer application has been tested in citrus... J.P. Molin, A.F. Colaço

2. A Precise Fruit Inspection System for Huanglongbing and Other Common Citrus Defects Using GPU and Deep Learning Technologies

World climate change and extreme weather conditions can generate uncertainties in crop production by increasing plant diseases and having significant impacts on crop yield loss. To enable precision agriculture technology in Florida’s citrus industry, a machine vision system was developed to identify common citrus production problems such as Huanglongbing (HLB), rust mite and wind scar. Objectives of this article were 1) to develop a simultaneous image acquisition system using multiple c... D. Choi, W. Lee, J.K. Schueller, R. Ehsani, F.M. Roka, M.A. Ritenour

3. Development of a Multiband Sensor for Citrus Black Spot Disease Detection

Citrus black spot (CBS), or Guignardia citricarpa, is known as the most destroying citrus fungal disease worldwide. CBS causes yield loss as a result of early fruit drop, and it leaves severely blemished and unmarketable fruit. While leaves usually remain symptomless, CBS generates various forms of lesions on citrus fruits including hard spot, cracked spot, and virulent spot. CBS lesions often appear on maturing fruit, starting two months before maturity. Warm temperature and sunlight exposur... A. Pourreza, W. Lee, J. Lu, P. Roberts

4. Sensor-based Technologies for Improving Water and Nitrogen Use Efficiency

 Limited reports exist on identifying the empirical relationships between plant nitrogen and water status with hyperspectral reflectance. This project is aiming to develop effective system for nitrogen and water management in wheat. Specifically: 1) To evaluate the effects of nitrogen rates and irrigation treatments on wheat plant growth and yield; 2) To develop methods to predict yield and grain protein content in varying nitrogen and water environments, and to determine the minimum nit... O.S. Walsh, K. Belmont, J. Mcclintick-chess

5. Development of a Multispectral Sensor for Crop Canopy Temperature Measurement

Quantifying spatial and temporal variability in plant stress has precision agriculture applications in controlling variable rate irrigation and variable rate nutrient application. One approach to plant stress detection is crop canopy temperature measurement by the use of thermographic or radiometric methods, generally in the long wave infrared (LWIR) wavelength range. A confounding factor in LWIR canopy temperature estimation is eliminating the effect of the soil background in the image. One ... P. Drew, K.A. Sudduth, E. Sadler

6. Prediction of Sugarcane Yields in Commercial Fields by Early Measurements with an Optical Crop Canopy Sensor

As a grass (Poaceae), sugarcane needs supplemental mineral nitrogen (N) to achieve high yields on commercial production areas. In Brazil, N recommendations for sugarcane ratoons are based on expected yield and the results of N response trials, as soil N analyses are not a suitable basis for decisions on optimum N fertilizer rates under tropical conditions. Since the vegetative parts in sugarcane are harvested, yield components such as the number of stalks and stalk height are directly correla... G. Portz, J. Jasper, J.P. Molin

7. Field-scale Nitrogen Recommendation Tools for Improving a Canopy Reflectance Sensor Algorithm

Nitrogen (N) rate recommendation tools are utilized to help producers maximize grain yield production. Many of these tools provide recommendations at field scales but often fail when corn N requirements are variable across the field. This may result in excess N being lost to the environment or producers receiving decreased economic returns on yield. Canopy reflectance sensors are capable of capturing within-field variability, although the sensor algorithm recommendations may not always be as ... C.J. Ransom, M. Bean, N. Kitchen, J. Camberato, P. Carter, R. Ferguson, F. Fernandez, D. Franzen, C. Laboski, E. Nafziger, J. Sawyer, J. Shanahan

8. Active and Passive Crop Canopy Sensors As Tools for Nitrogen Management in Corn

The objectives of this research were to (i) assess the correlation between active and passive crop canopy sensors’ vegetation indices at different corn growth stages and (ii) assess sidedress variable rate nitrogen (N) recommendation accuracy of active and passive sensors compared to the agronomic optimum N rate (AONR). The experiment was conducted near Central City, Nebraska on a Novina sandy loam planted to corn on 15 April 2015. The experiment was a randomized complete-block design w... L. Bastos, R. Ferguson

9. Sensor-based Nitrogen Applications Out-performed Producer-chosen Rates for Corn in On-farm Demonstrations

Optimal nitrogen fertilizer rate for corn can vary substantially within and among fields.  Current N management practices do not address this variability.  Crop reflectance sensors offer the potential to diagnose crop N need and control N application rates at a fine spatial scale.  Our objective was to evaluate the performance of sensor-based variable-rate N applications to corn, relative to constant N rates chosen by the producer.  Fifty-five replicated on-farm demonstrat... P. Scharf, K. Shannon, K. Sudduth, N. Kitchen

10. Liquid Flow Control Requirements for Crop Canopy Sensor-Based N Management in Corn: A Project SENSE Case Study

While on-farm adoption of crop canopy sensors for directing in-season nitrogen (N) application has been slow, research focused on these systems has been significant for decades. Much emphasis has been placed on developing and testing algorithms based on sensor output to predict N needs, but little information has been published regarding liquid flow control requirements on equipment used in conjunction with these sensing systems. Addition of a sensor-based system to a standard spray rate cont... J. Luck, J. Parrish, L. Thompson, B. Krienke, K. Glewen, R.B. Ferguson

11. Precision Nitrogen Management Based on Nitrogen Removal in Rainfed Wheat

Growers of hard red spring wheat may capture price premiums for maximizing the protein concentration of their grain. Nitrogen (N) nutrition adequacy is crucial to achieving high grain protein concentration. The objective of this study was to determine the usefulness of N removal maps by comparing grain protein, yields, and dollar returns obtained from this precision N management approach with that from conventional uniform N management. Strip plot experiments were designed to compare spatiall... D.J. Bonfil, I. Mufradi, S. Asido, D.S. Long

12. Using Pricise Gps/gis Based Barley Yield Maps to Predict Site-specific Phosphorus Requirements

Three fundamental stages and technologies as main parts of a precision farming project should be considered precisely. These are access to actual multi- dimensional variability detail or variable description on farms, creating a suitable variable-rate technology, and finally providing a decision support system. Some results of a long term practical research conducted by the author in Upon-Tyne Newcastle University of UK for reliable yield monitoring and mapping were utilised to prepare this p... A. Sanaei

13. Seasonal Patterns of Vegetative Indices Over Cropping Systems

Remote sensing of reflectance in the visible and near-infrared portions of the spectrum has been used for agronomic applications for a number of years. The combination of different wavelengths into vegetative indices have proven useful for a variety of applications that range from biomass, leaf area, leaf chlorophyll, yield, crop residue, and crop damage. To help refine our understanding of vegetative indices studies were conducted on corn (Zea mays L.), soybean (Glycine max (L.) Merr.), whea... J.L. Hatfield, J.H. Prueger

14. Canopy Temperature Mapping with a Vineyard Robot

The wine industry is a strategic sector in many countries worldwide. High revenues in the wine market typically result in higher investments in specialized equipment, so that producers can introduce disruptive technology for increasing grape production and quality. However, many European producers are approaching retirement age, and therefore the agricultural sector needs a way for attracting young farmers who can assure the smooth transition between generations; digital technology offers an ... V. Saiz-rubio, M. Diago, J. Tardaguila, S. Gutierrez, F. Rovira-más, F. Alves

15. Agricultural Robots: Drivers, Barriers and Opportunities for Adoption

In the next decades, agriculture is to feed a rapidly growing population, while tackling changes in climate, overexploited resources, changes in markets and competition with other sectors. Agriculture is, therefore, expected to move towards a more sustainable intensification. In this context, robotic technologies are aimed to reduce labor, using fewer resources and improving agricultural productivity. There is growing demand and awareness of the potential use of such technologies in the farmi... K. Rial-lovera

16. Design and Analysis of ISO 11783 Task Controller's Functionality in Server - Client ECU for Agricultural Vehicles

A modern agricultural vehicle's electronic control units (ECU) communicated based on the ISO 11783 standards. The connection of different machines, implements, different manufacturers into a single bus for the exchange of control commands and sensor data are a challenge for the precision agriculture. One of main functionality is the Task controller in the intelligent monitoring system. The task controller is to log data and assign set-point values for automated work (task) seque... E. Tumenjargal, E. Batbayar, S. Munkhbayar, S. Tsogt-ochir, M. Oyumaa, K. Chung, W. Ham

17. UAV Images As a Source for Retrieval of Machine Tracks and Vegetation Gaps Along Crop Rows

The trend of acquiring equipment and obtaining high resolution remote sensed images by Unmanned Aerial Vehicles (UAV) have been followed by sugarcane producers in Brazil, given its low cost. The images taken from fields have been used for retrieval of information like Digital Terrain Models (DTMs) from stereoscopy of overlapping images and spatial variance of biomass. In sugarcane production, driving deviations occur during planting because of manual steering inaccuracy, sliding of machines s... M. Spekken, J.P. Molin

18. Economics of Swarm Bot Profitability for Cotton Harvest

Improved equipment management is one way which producers can increase profits. For cotton, this is especially true due to specialized equipment used for the sole purpose of harvest. Questions are raised regarding a way to either reduce or replace traditional cotton pickers. The main alternative being discussed is an investment in autonomous “swarm bots” to replace traditional equipment. Swarm bots are fully automated robots tasked with the responsibility of picking cotton one row ... J. Cullop, T.W. Griffin, G. Ibendahl, E. Barnes, J. Shockley, J. Devine

19. High Accuracy Path Tracking for Rice Drill Seeder in Uneven Paddy Fields

High accuracy track tracing is a challenging task in paddy fields due to uneven grounds as well as wet soil conditions, thus restricting the development of autonomous rice drill seeder in China. For the purpose of overcoming the obstacles in application of autonomous rice drill seeder in paddy fields, a path tracking algorithm with high accuracy used for steering control during straight traveling in uneven mud paddy fields is introduced in this paper. Combining lateral deviation and heading a... Y. Li, Y. Zhang, X. Liu, C. Liu

20. Development of a Machine Vision Yield Monitor for Shallot Onion Harvesters

Crop yield estimation and mapping are important tools that can help growers efficiently use their available resources and have access to detailed representations of their farm. Technical advancements in computer vision have improved the detection, quality assessment and yield estimation processes for crops, including apples, citrus, mangoes, maize, figs and many other fruits. However, similar methods capable of exporting a detailed yield map for vegetable crops have not yet been fully develop... A.A. Boatswain jacques, V.I. Adamchuk, G. Cloutier, J.J. Clark, C. Miller

21. Computer Vision Techniques Applied to Natural Scenes Recognition and Autonomous Locomotion of Agricultural Mobile Robots

The use of computer systems in Precision Agriculture (PA) promotes the processes’ automation and its applied tasks, specifically the inspection and analysis of agricultural crops, and guided/autonomous locomotion of mobile robots. In this context, this research aims the application of computer vision techniques for agricultural mobile robot locomotion, settled through an architecture for the acquisition, image processing and analysis, in order to segment, classify and recognize patterns... L.C. Lugli, M.L. Tronco, A.J. Porto

22. Use of MLP Neural Networks for Sucrose Yield Prediction in Sugarbeet

INTRODUCTION Sugar beet is one of the more technified agro industries in Spain. In the last years, it has leaded as well the digital transformation with the objective of maintaining sugar beet competitivity both national and internationally. Among other lines, very high potential has been identified in determining the sucrose content using a combination of Artificial Intelligence and Remote Sensing. This work presents the conclusions of an extensive data acquisition task, creation o... M. Cabrera dengra, C. Ferraz pueyo, V. Pajuelo madrigal, L. Moreno heras, G. Inunciaga leston, R. Fortes

23. You Can Not Manage What You Dont Measure

The problem of variability in soil nutrient analysis has been studied for years by a number of industry experts; unable to decipher and commercialize hyperspectral soil sensing. Many studies have taken years of testing to account for variability thathas a dramatic impacts on precision of recommendations. The main tradeoff we have identified is between accuracy and precision. Large quantities of raw data are requir... K. Fleming, N. Schottle, P. Nagel, G. Koch

24. Assessing the Distribution Uniformity of Broadcast-interseeded Cover Crops at Different Crop Stages by an Unmanned Aerial Vehicle

Drones can now carry larger payloads and have become more affordable, making them a viable option to use for broadcast-interseeding cover crops in the fall, prior to main crop harvest. This strategy has become popular in Ohio over the past two years. However, this new strategy arose quickly with a limited understanding of field performance of the drone’s distribution uniformity under different parameters such as rates, swath widths, speeds, or cash crop type. Therefore, the objective of... A.D. Thomas, J.P. Fulton, S. Khanal, O. Ortez, G. Mcglinch