Proceedings

Find matching any: Reset
Vegetative Indices in Crop Production
Precision Fertilization of Horticultural Crops
Profitability and Success Stories in Precision Agriculture
Precision Management / Precision Conservation
Robotics, Guidance and Automation
Sensor Application in Managing In-season Crop Variability
Application of Granular Materials with Drones
Precision A to Z for Practitioners
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
Weather and Models for Precision Agriculture
Optimizing Farm-level use of Spatial Technologies
In-Season Nitrogen Management
Add filter to result:
Authors
Abban-Baidoo, E
Abenina, M
Abukmeil, R
Adamchuk, V.I
Adamchuk, V.I
Adhikari, K
Admasu, W.A
Ahrends, H.E
Al-Gaadi, K
Alchanati, V
Alchanatis, V
Almallahi, A
Alshihabi, O
Alshihabi, O
Alves, F
Ameglio, L
Ameglio, L
Angar, H
Antunes de Almeida, L.F
Arias, A
Arnall, B
Asido, S
Ayral, J
Balboa, G
Barnes, E
Barron, J
Bastos, L
Bastos, L
Bastos, L
Batbayar, E
Bathke, K.J
Bathke, K.J
Baumbauer, C
Bean, M
Beeri, O
Beeri, O
Belmont, K
Ben-Gal, A
Bhattarai, A
Bindish, R
Boatswain Jacques, A.A
Boersma, S
Bonfil, D.J
Brown, P
Buckmaster, D
Cabrera Dengra, M
Camberato, J
Cao, Q
Cao, Q
Cao, W
Cao, W
Carcedo, A
Carlier, A
Carlier, A
Carter, P
Cepicky, J
Chakraborty, M
Charvat, K
Chen, X
Chen, X
Choi, D
Chung, K
Ciampitti, I
Ciampitti, I
Ciampitti, I
Ciampitti, I
Clark, J.J
Cloutier, G
Cohen, Y
Cohen, Y
Colaço, A.F
Corassa, G
Cox, D
Cross, T
Cullop, J
Cutulle, M
Dandrifosse, S
Dandrifosse, S
Darr, M.J
Davadant, P
DeBruin, J
Dempsey, D
Devine, J
Dey, S
Dey, S
Diago, M
Diaz, D
Drew, P
Dreyer, J.G
Duarte, P.R
Dumont, B
Dumont, B
Dumont, B
Eberle, D
Ehsani, R
El-Mejjaouy, Y
Ennadifi, E
Everett, M
Feng, G
Ferguson, R.B
Ferguson, R.B
Ferguson, R.B
Ferguson, R.B
Fernandez, F.G
Fernández, F
Ferraz Pueyo, C
Fleming, K
Fortes, R
Francisco, E
Franzen, D.W
Franzen, D.W
Fu, Z
Fulton, J.P
Fulton, J.P
Gahler, A
Gal, A
Gandorfer, M
Gips, A
Glewen, K
Gnip, P
Goldshtein, E
Goldshtein, E
Goldwasser, Y
Goodrich, P
Gosselin, B
Greer, K
Griffin, T
Griffin, T.W
Gunzenhauser, B
Gupta, S
Gutierrez, S
Hajda, C
Ham, W
Hartschuh, J.M
Hatfield, J.L
Hefley, T
Heggemann, T.W
Hensley, R
Hernandez, C
Hernandez, C
Hintz, G.D
Hoogenboom, G
Horbe, T
Huang, Y
Huender, L
Ibendahl, G
Inunciaga Leston, G
Jakhar, A
Jasper, J
Jha, G
Jha, G
Joshi, R
Kang, C
Karkee, M
Katz, L
Keller, M
Khanal, S
Khosla, R
Khosla, R
Kim, J
Kitchen, N
Kitchen, N
Kitchen, N.R
Koch, G
Kopanja, M
Krienke, B
Krol, C
Kyveryga, P
Kyveryga, P
Laboski, C
Lajunen, A
Lanza, P
Lee, K
Lee, W
Lee, W
Lemes Bosche, L
Li, Y
Li, Y
Litaor, I
Liu, C
Liu, H
Liu, P
Liu, X
Long, D.S
Longchamps, L
Longchamps, L
Lu, J
Lu, J
Luck, J
Luck, J.D
Luck, J.D
Lugli, L.C
Lund, E
Lund, T
MECHRI, M
Mackenzie, C
Madugundu, R
Maestrini, B
Maja, J.J
Mandal, D
Mandal, D
Maxton, C
Mayer, W
McClintick-Chess, J
McDonald, T.P
McGlinch, G
Melgar, J
Mercatoris, B
Mercatoris, B
Mercatoris, B
Meyer-Aurich, A
Miao, Y
Miao, Y
Miao, Y
Miao, Y
Miao, Y
Miao, Y
Mieno, T
Miller, C
Mimić, G
Mizuta, K
Molin, J.P
Molin, J.P
Molin, J.P
Molin, J.P
Morales, A.C
Moreno Heras, L
Mufradi, I
Munkhbayar, S
Myers, D
Nadav, I
Nafziger, E
Nagel, P
Naor, A
Narayana, C
Nazrul, F
Nazrul, F
Nguyen, A
Nocco, M
Nouiri, I
Nunes, L
Ortez, O
Ortiz, B
Ortiz, B.V
Ortiz, B.V
Oukarroum, A
Owens, P.R
Oyumaa, M
Paccioretti, P
Pagé Fortin, M
Pajuelo Madrigal, V
Palla, S
Pan, L
Parrish, J
Pathak, H
Peeters, A
Pelta, R
Pelta, R
Persson, K
Phillips, S
Porter, W
Porto, A.J
Portz, G
Pott, L.P
Pourreza, A
Pourreza, A
Prasad, R
Prasad, R
Prasad, V
Prestholt, A
Pronk, A
Prueger, J.H
Puntel, L
PÄTZOLD, S
Quinn, D.J
Ransom, C.J
Ransom, C.J
Ransom, C.J
Rial-Lovera, K
Ritenour, M.A
Roberts, P
Roka, F.M
Rosen, C
Rovira-Más, F
Sade, Z
Sadler, E
Saiz-Rubio, V
Sampath, N
Sanaei, A
Sawyer, J
Scarpin, G
Scarpin, G
Scharf, P
Schelling, K
Schmidt, R
Schottle, N
Schueller, J.K
Schulthess, U
Schwalbert, R.A
Schwiesow, D
Shanahan, J
Shannon, K
Sharma, A
Shcherbatyuk, N
Shilo, T
Shilo, T
Shockley, J
Sihi, D
Siqueira, R.D
Smith, D.R
Smith, T
Soderstrom, M
Spekken, M
Stahl, K
Stansell, J
Stelford, M
Stenberg, B
Stettler, E
Sudduth, K
Sudduth, K
Sudduth, K.A
Sudduth, K.A
Sudduth, K.A
T.Meyer, S
Tardaguila, J
Tarshish, R
Tavares, T.R
Taylor, R.K
Thomas, A.D
Thompson, L
Thompson, L
Tian, Y
Tian, Y
Tola, E
Tronco, M.L
Tsogt-Ochir, S
Tumenjargal, E
Underwood, H
Unruh, R
Van Oort, P
VanderPlas, S
Velasco, J.S
Vermeulen, P
Veum, K
Veum, K.S
Vong, C
Vories, E
Wagner, P
Wakahara, S
Walsh, M
Walsh, O.S
Wang, D.R
Wang, J
Wang, W
Warren, C.J
Weersink, A
Wehrle, R
Whitaker, B
Whitaker, B
Xiong, X
Yang, Z
Ye, D
Yore, A
Yu, K
Yu, K
Zhang, J
Zhang, Q
Zhang, Y
Zhen, X
Zhou, J
Zhou, J
Zhou, J
Zhou, J
Zhu, Y
Zhu, Y
chang, Q
da Silva, T.R
de Carvalho, H.W
de Oliveira, M.F
li, F
liu, X
liu, X
van Evert, F
van Versendaal, E
Šusliková, B
Topics
Proximal and Remote Sensing of Soil and Crop (including Phenotyping)
In-Season Nitrogen Management
Precision A to Z for Practitioners
Robotics, Guidance and Automation
Weather and Models for Precision Agriculture
Precision Management / Precision Conservation
Sensor Application in Managing In-season Crop Variability
Profitability and Success Stories in Precision Agriculture
Optimizing Farm-level use of Spatial Technologies
Precision Fertilization of Horticultural Crops
Application of Granular Materials with Drones
Vegetative Indices in Crop Production
Type
Oral
Poster
Year
2022
2024
2012
2018
2008
2016
2010
2014
Home » Topics » Results

Topics

Filter results99 paper(s) found.

1. Economic Potential Of Monitoring Protein Content At Harvest And Blending Wheat Grain

  Precision agriculture has been primarily focused on the management of inputs but recently developed technologies that monitor grain quality at harvest create the opportunity to manage outputs spatially.  Provided specific product qualities achieve higher prices, monitoring, separation and blending may be economically justified. This paper analyzes the potential economic effects of blending different grain qualities at the farm level. We estimated sub-field spec... A. Meyer-aurich, M. Gandorfer, A. Weersink, P. Wagner

2. New Geospatial Technologies For Precision Farming

... K. Charvat, J. Cepicky, P. Gnip

3. Proper Implementation Of Precision Agricultural Technologies For Conducting On-farm Research

Precision agricultural technologies provide farmers, practitioners and researchers the ability to conduct on-farm or field-scale research to refine farm management, improve long term crop production decisions, and implement site-specific management strategies. However, the limitations of these technologies must be understood to draw accurate and meaningful conclusions from such investigations. Therefore, the objective of this paper was to outline the limitations of seve... J.P. Fulton, M.J. Darr, R.K. Taylor, T.P. Mcdonald

4. Optimizing N, P, K, And S Application Across Landscapes In The Northern Great Plains Using The Plant Root Simulator (PRS™ ) Technology.

  Early papers on precision farming focused on variable rate fertilization and variable spraying technology (Roberts, 1996).  The adoption of this 1st round of precision farming was acknowledged to be a “dead horse” (Mangold, 2000).  These authors put forward the notion that farmers needed better tools to decide if the intensive management of fertilizer would result in a significant reduction in input costs, or a significant increase in crop yie... K. Greer

5. Beyond NDVI - Additional Benefits of RapidEye Image Products

... U. Schulthess, K. Schelling

6. The Map - Supported by New NPK-Sensors - is Intelligent, Not the Tractor

DI Walter H. Mayer   PROGIS Software GmbH   Postgasse 6, A-9500 Villach www.progis.com office@progis.com +43 4242 26332 WinGIS®-AGROffice® and BING®-maps: Since years PROGIS has been developing an object oriented GIS (WinGIS®), agriculture and forestry applications for single enterprises, for advisors, for the chain management including logistics and communication implementation with mobile GIS (mobG... W. Mayer

7. An Approach to Selection of Soil Water Content Monitoring Locations within Fields

Increased input efficiency is one of the main challenges for a modern agricultural enterprise. One way to optimize production cycles is to rationalize crop residue utilization. In conditions where there is limited use of mineral fertilizers and without applying manure, plant residues may be used as an organic fertilizer ... V.I. Adamchuk, L. Pan, R.B. Ferguson

8. The Use of Crop Sensors Beyond Nitrogen and Improving the Right to Farm

... C. Mackenzie

9. John Deere FarmSight™

Agriculture has had several revolutions in the past century, and it currently faces what may be its greatest challenge to date – population growth and the increased need for food, fiber, and fuel in the future.  To meet this challenge the agricultural industry will have to drive efficiencies to a level never seen before, within a context of several macro trends (e.g., farm sizes increasing, environmental sustainability requirements evolving).  John Deere FarmSightTM... M. Stelford

10. AMMO Ag: Agricultural Marketing & Merchandising Optimizer

EHedger provides an integrated risk management solution for farm operations utilizing our proprietary AMMO platform combined with proven hedging strategies, first-hand market insight, effective trade execution and farming expertise. AMMO software enables real-time analysis of crop/livestock production. Farmers can set profit margins, evaluate variable profit scenarios, understand production costs and risks, and create sustainable marketing programs to maximize their... C. Krol, D. Dempsey

11. Real-Time Fluorescence Sensors for Precision Agriculture

... J. Ayral

12. Raven Sponsor Presentation: Slingshot Overview

Slingshot, a suite of products and services centered around high-speed wireless connectivity in the cab ... D. Schwiesow

13. Precision Agriculture and Springer

Maryse Walsh will be presenting Precision Agriculture, the Springer journal, but also the discipline and its place in the Springer publications overall. The community attending the ICPA has a major role in ensuring the positive development of these publications and the affiliation of the journal to the ISPA will only help. ... M. Walsh

14. Raising Awareness of the Potential of Crop Sensing Technologies to Improve Environmental Stewardship

Extensive research and on-farm work using active crop sensors for input management have been conducted in the Midwest and Great Plain USA with favorable results. Contrasting is the situation in the Southeast where the adoption by farmers is still limited and current on-going research is focused on the main southeastern crops. This presentation will provide an overview of the multiple extension activities related to crop sensing involving farmers, extension agents and crop consultants in ... B. Ortiz

15. Making the Most of Precision Ag Data: Big Data in Farm Management

na ... T. Griffin

16. Davco's Journey Into Precision Sugarcane Farming

Davco's Journey Into Precision Sugarcane Farming ... D. Cox

17. Sensor Algorithms 101

This presentation will break down the algorithms used for Optical Sensor Based Nitrogen rate recommendations. The group will walk through the mechanics and agronomics behind the most commonly used equations, in order to turn the black boxes into slightly muddied waters. ... B. Arnall

18. Use of Zone or Grid Soil Nutrient Management as Part of an Integrated Site-specific Nutrient Strategy

Zone and grid sampling are used as a basis for fertilizing with nutrients site-specifically. Use of sensors to assist in-season management of nitrogen is also gaining momentum. The presentation will suggest when grid or zone sampling for preplant nutrients might be utilized and how these recommendations would be used in an integrated approach of preplant plus in-season nutrient management. ... D. Franzen

19. A Five Year Study Of Variable Rate Fertilization In Citrus

Citrus is a major crops in Brazil, especially in the São Paulo state, which is the main citrus production region in the world. Yet, site specific technology is still in early stages of adoption. Variable rate application of inputs is the most important tool in a Precision Agriculture system, however its effect on citrus agronomical aspects are still unknown, especially during long periods of observation. Thus, variable rate fertilizer application has been tested in citrus... J.P. Molin, A.F. Colaço

20. A Precise Fruit Inspection System for Huanglongbing and Other Common Citrus Defects Using GPU and Deep Learning Technologies

World climate change and extreme weather conditions can generate uncertainties in crop production by increasing plant diseases and having significant impacts on crop yield loss. To enable precision agriculture technology in Florida’s citrus industry, a machine vision system was developed to identify common citrus production problems such as Huanglongbing (HLB), rust mite and wind scar. Objectives of this article were 1) to develop a simultaneous image acquisition system using multiple c... D. Choi, W. Lee, J.K. Schueller, R. Ehsani, F.M. Roka, M.A. Ritenour

21. Development of a Multiband Sensor for Citrus Black Spot Disease Detection

Citrus black spot (CBS), or Guignardia citricarpa, is known as the most destroying citrus fungal disease worldwide. CBS causes yield loss as a result of early fruit drop, and it leaves severely blemished and unmarketable fruit. While leaves usually remain symptomless, CBS generates various forms of lesions on citrus fruits including hard spot, cracked spot, and virulent spot. CBS lesions often appear on maturing fruit, starting two months before maturity. Warm temperature and sunlight exposur... A. Pourreza, W. Lee, J. Lu, P. Roberts

22. Sensor-based Technologies for Improving Water and Nitrogen Use Efficiency

 Limited reports exist on identifying the empirical relationships between plant nitrogen and water status with hyperspectral reflectance. This project is aiming to develop effective system for nitrogen and water management in wheat. Specifically: 1) To evaluate the effects of nitrogen rates and irrigation treatments on wheat plant growth and yield; 2) To develop methods to predict yield and grain protein content in varying nitrogen and water environments, and to determine the minimum nit... O.S. Walsh, K. Belmont, J. Mcclintick-chess

23. Development of a Multispectral Sensor for Crop Canopy Temperature Measurement

Quantifying spatial and temporal variability in plant stress has precision agriculture applications in controlling variable rate irrigation and variable rate nutrient application. One approach to plant stress detection is crop canopy temperature measurement by the use of thermographic or radiometric methods, generally in the long wave infrared (LWIR) wavelength range. A confounding factor in LWIR canopy temperature estimation is eliminating the effect of the soil background in the image. One ... P. Drew, K.A. Sudduth, E. Sadler

24. Prediction of Sugarcane Yields in Commercial Fields by Early Measurements with an Optical Crop Canopy Sensor

As a grass (Poaceae), sugarcane needs supplemental mineral nitrogen (N) to achieve high yields on commercial production areas. In Brazil, N recommendations for sugarcane ratoons are based on expected yield and the results of N response trials, as soil N analyses are not a suitable basis for decisions on optimum N fertilizer rates under tropical conditions. Since the vegetative parts in sugarcane are harvested, yield components such as the number of stalks and stalk height are directly correla... G. Portz, J. Jasper, J.P. Molin

25. Field-scale Nitrogen Recommendation Tools for Improving a Canopy Reflectance Sensor Algorithm

Nitrogen (N) rate recommendation tools are utilized to help producers maximize grain yield production. Many of these tools provide recommendations at field scales but often fail when corn N requirements are variable across the field. This may result in excess N being lost to the environment or producers receiving decreased economic returns on yield. Canopy reflectance sensors are capable of capturing within-field variability, although the sensor algorithm recommendations may not always be as ... C.J. Ransom, M. Bean, N. Kitchen, J. Camberato, P. Carter, R. Ferguson, F. Fernandez, D. Franzen, C. Laboski, E. Nafziger, J. Sawyer, J. Shanahan

26. Active and Passive Crop Canopy Sensors As Tools for Nitrogen Management in Corn

The objectives of this research were to (i) assess the correlation between active and passive crop canopy sensors’ vegetation indices at different corn growth stages and (ii) assess sidedress variable rate nitrogen (N) recommendation accuracy of active and passive sensors compared to the agronomic optimum N rate (AONR). The experiment was conducted near Central City, Nebraska on a Novina sandy loam planted to corn on 15 April 2015. The experiment was a randomized complete-block design w... L. Bastos, R. Ferguson

27. Sensor-based Nitrogen Applications Out-performed Producer-chosen Rates for Corn in On-farm Demonstrations

Optimal nitrogen fertilizer rate for corn can vary substantially within and among fields.  Current N management practices do not address this variability.  Crop reflectance sensors offer the potential to diagnose crop N need and control N application rates at a fine spatial scale.  Our objective was to evaluate the performance of sensor-based variable-rate N applications to corn, relative to constant N rates chosen by the producer.  Fifty-five replicated on-farm demonstrat... P. Scharf, K. Shannon, K. Sudduth, N. Kitchen

28. Liquid Flow Control Requirements for Crop Canopy Sensor-Based N Management in Corn: A Project SENSE Case Study

While on-farm adoption of crop canopy sensors for directing in-season nitrogen (N) application has been slow, research focused on these systems has been significant for decades. Much emphasis has been placed on developing and testing algorithms based on sensor output to predict N needs, but little information has been published regarding liquid flow control requirements on equipment used in conjunction with these sensing systems. Addition of a sensor-based system to a standard spray rate cont... J. Luck, J. Parrish, L. Thompson, B. Krienke, K. Glewen, R.B. Ferguson

29. Precision Nitrogen Management Based on Nitrogen Removal in Rainfed Wheat

Growers of hard red spring wheat may capture price premiums for maximizing the protein concentration of their grain. Nitrogen (N) nutrition adequacy is crucial to achieving high grain protein concentration. The objective of this study was to determine the usefulness of N removal maps by comparing grain protein, yields, and dollar returns obtained from this precision N management approach with that from conventional uniform N management. Strip plot experiments were designed to compare spatiall... D.J. Bonfil, I. Mufradi, S. Asido, D.S. Long

30. Using Pricise Gps/gis Based Barley Yield Maps to Predict Site-specific Phosphorus Requirements

Three fundamental stages and technologies as main parts of a precision farming project should be considered precisely. These are access to actual multi- dimensional variability detail or variable description on farms, creating a suitable variable-rate technology, and finally providing a decision support system. Some results of a long term practical research conducted by the author in Upon-Tyne Newcastle University of UK for reliable yield monitoring and mapping were utilised to prepare this p... A. Sanaei

31. Seasonal Patterns of Vegetative Indices Over Cropping Systems

Remote sensing of reflectance in the visible and near-infrared portions of the spectrum has been used for agronomic applications for a number of years. The combination of different wavelengths into vegetative indices have proven useful for a variety of applications that range from biomass, leaf area, leaf chlorophyll, yield, crop residue, and crop damage. To help refine our understanding of vegetative indices studies were conducted on corn (Zea mays L.), soybean (Glycine max (L.) Merr.), whea... J.L. Hatfield, J.H. Prueger

32. Canopy Temperature Mapping with a Vineyard Robot

The wine industry is a strategic sector in many countries worldwide. High revenues in the wine market typically result in higher investments in specialized equipment, so that producers can introduce disruptive technology for increasing grape production and quality. However, many European producers are approaching retirement age, and therefore the agricultural sector needs a way for attracting young farmers who can assure the smooth transition between generations; digital technology offers an ... V. Saiz-rubio, M. Diago, J. Tardaguila, S. Gutierrez, F. Rovira-más, F. Alves

33. Agricultural Robots: Drivers, Barriers and Opportunities for Adoption

In the next decades, agriculture is to feed a rapidly growing population, while tackling changes in climate, overexploited resources, changes in markets and competition with other sectors. Agriculture is, therefore, expected to move towards a more sustainable intensification. In this context, robotic technologies are aimed to reduce labor, using fewer resources and improving agricultural productivity. There is growing demand and awareness of the potential use of such technologies in the farmi... K. Rial-lovera

34. Design and Analysis of ISO 11783 Task Controller's Functionality in Server - Client ECU for Agricultural Vehicles

A modern agricultural vehicle's electronic control units (ECU) communicated based on the ISO 11783 standards. The connection of different machines, implements, different manufacturers into a single bus for the exchange of control commands and sensor data are a challenge for the precision agriculture. One of main functionality is the Task controller in the intelligent monitoring system. The task controller is to log data and assign set-point values for automated work (task) seque... E. Tumenjargal, E. Batbayar, S. Munkhbayar, S. Tsogt-ochir, M. Oyumaa, K. Chung, W. Ham

35. UAV Images As a Source for Retrieval of Machine Tracks and Vegetation Gaps Along Crop Rows

The trend of acquiring equipment and obtaining high resolution remote sensed images by Unmanned Aerial Vehicles (UAV) have been followed by sugarcane producers in Brazil, given its low cost. The images taken from fields have been used for retrieval of information like Digital Terrain Models (DTMs) from stereoscopy of overlapping images and spatial variance of biomass. In sugarcane production, driving deviations occur during planting because of manual steering inaccuracy, sliding of machines s... M. Spekken, J.P. Molin

36. Economics of Swarm Bot Profitability for Cotton Harvest

Improved equipment management is one way which producers can increase profits. For cotton, this is especially true due to specialized equipment used for the sole purpose of harvest. Questions are raised regarding a way to either reduce or replace traditional cotton pickers. The main alternative being discussed is an investment in autonomous “swarm bots” to replace traditional equipment. Swarm bots are fully automated robots tasked with the responsibility of picking cotton one row ... J. Cullop, T.W. Griffin, G. Ibendahl, E. Barnes, J. Shockley, J. Devine

37. High Accuracy Path Tracking for Rice Drill Seeder in Uneven Paddy Fields

High accuracy track tracing is a challenging task in paddy fields due to uneven grounds as well as wet soil conditions, thus restricting the development of autonomous rice drill seeder in China. For the purpose of overcoming the obstacles in application of autonomous rice drill seeder in paddy fields, a path tracking algorithm with high accuracy used for steering control during straight traveling in uneven mud paddy fields is introduced in this paper. Combining lateral deviation and heading a... Y. Li, Y. Zhang, X. Liu, C. Liu

38. Development of a Machine Vision Yield Monitor for Shallot Onion Harvesters

Crop yield estimation and mapping are important tools that can help growers efficiently use their available resources and have access to detailed representations of their farm. Technical advancements in computer vision have improved the detection, quality assessment and yield estimation processes for crops, including apples, citrus, mangoes, maize, figs and many other fruits. However, similar methods capable of exporting a detailed yield map for vegetable crops have not yet been fully develop... A.A. Boatswain jacques, V.I. Adamchuk, G. Cloutier, J.J. Clark, C. Miller

39. Computer Vision Techniques Applied to Natural Scenes Recognition and Autonomous Locomotion of Agricultural Mobile Robots

The use of computer systems in Precision Agriculture (PA) promotes the processes’ automation and its applied tasks, specifically the inspection and analysis of agricultural crops, and guided/autonomous locomotion of mobile robots. In this context, this research aims the application of computer vision techniques for agricultural mobile robot locomotion, settled through an architecture for the acquisition, image processing and analysis, in order to segment, classify and recognize patterns... L.C. Lugli, M.L. Tronco, A.J. Porto

40. Developing Empirical Method to Estimate Phosphorous in Potato Plants Using Spectroscopy-based Approach

Application of non-destructive sensors opens a promising opportunity to provide efficient information on nutrient contents based on leaf or canopy reflectance in different crops. In potatoes, nutrient levels are estimated by conducting chemical tests for the petioles. In thinking of deploying sensors for potato nutrient estimation, it is necessary to study the spectrum based on petiole chemical testing rather than leaf chemical testing. Thus, this study aimed to investigate whether there is a... R. Abukmeil, A. Almallahi

41. On-the-go Gamma Spectrometry and Its Evaluation Via Support Vector Machines: Really a Valuable Tool for Site-independent Soil Texture Prediction?

With progressive implementation of precision agriculture (PA) techniques in current agricultural/ viticultural practice, the need for high-resolution information on soil properties at low effort and cost is increasing. Moreover, climate change and extended drought periods do even increase this demand. Evaluating soil fertility and carbon storage potential of arable fields and vineyards, e.g. for future economic assessment of ecosystem services, requires spatially resolved soil data. Soil text... S. PÄtzold, T.W. Heggemann, R. Wehrle

42. A Hyperlocal Machine Learning Approach to Estimate NDVI from SAR Images for Agricultural Fields

The normalized difference vegetation index (NDVI) is a key parameter in precision agriculture used globally since the 1970s. The NDVI is sensitive to the biochemical and physiological properties of the crop and is based on the Red (~650 nm) and NIR (~850 nm) spectral bands. It is used as a proxy to monitor crop growth, correlates to the crop coefficient (Kc), leaf area index (LAI), crop cover, and more. Yet, it is susceptible to clouds and other atmospheric conditions which might al... R. Pelta, O. Beeri, T. Shilo, R. Tarshish

43. Gamma-ray Spectrometry to Determine Soil Properties for Soil Mapping in Precision Agriculture

Soil maps are critical for various land use applications and form the basis for the successful implementation of precision agriculture in crop production. Soil maps provide the spatial distribution of important soil physical and chemical properties to a farmer. The farmer uses this information to make critical management decisions for profitable and sustainable food production. South Africa is a water scarce country where rainfall is mainly seasonal and unreliable. Under these circumstances, ... J.G. Dreyer, L. Ameglio

44. Predicting Secondary Soil Fertility Attributes Using XRF Sensor with Reduced Scanning Time in Samples with Different Moisture Content

To support future in situ/on-the-go applications using X-ray fluorescence (XRF) sensors for soil mapping, this study aimed at evaluating the XRF performance for predicting organic matter (OM), base saturation (V), and exchangeable (ex-) Mg, using a reduced analysis time (e.g., 4 s) in soil samples with different moisture contents. These attributes are considered secondary for XRF prediction because they do not present emission lines in the XRF spectrum. Ninety-nine soil samp... T.R. Tavares, J.P. Molin, T.R. Da silva , H.W. De carvalho

45. The Use of Spatial and Temporal Measures to Enhance the Sensitivity of Satellite-based Spectral Vegetation Indices to (Water) Stress in Maize Fields

Climate change and water scarcity are reducing the available irrigation water for agriculture thus turning it into a limited resource. Today calculating and estimating crop water requirements are achieved through the ETc FAO-56 model where the effect of climate on crop water requirement is determined through the water evaporation from the soil and plant (ETref), and a calendar crop coefficient (Kc). Models t... Y. Goldwasser, V. Alchanati, E. Goldshtein, Y. Cohen, A. Gips, I. Nadav

46. Organ Scale Nitrogen Map: a Novel Approach for Leaf Nitrogen Concentration Estimation

Crop nitrogen trait estimations have been used for decades in the frame of precision agriculture and phenotyping researches. They are crucial information towards a sustainable agriculture and efficient use of resources. Remote sensing approaches are currently accurate tools for nitrogen trait estimations. They are usually quantified through a parametric regression between remote sensing data and the ground truth. For instance, chlorophyll or nitrogen concentration are accurately estimated usi... A. Carlier, S. dandrifosse, B. Dumont, B. Mercatoris

47. Sun Effect on the Estimation of Wheat Ear Density by Deep Learning

Ear density is one of the yield components of wheat and therefore a variable of high agronomic interest. Its traditional measurement necessitates laborious human observations in the field or destructive sampling. In the recent years, deep learning based on RGB images has been identified as a low-cost, robust and high-throughput alternative to measure this variable. However, most of the studies were limited to the computer challenge of counting the ears in the images, without aiming to convert... S. Dandrifosse, E. Ennadifi, A. Carlier, B. Gosselin, B. Dumont, B. Mercatoris

48. Machine Learning Techniques for Early Identification of Nitrogen Variability in Maize

Characterizing and managing nutrient variability has been the focus of precision agriculture research for decades. Previous research has indicated that in-situ fluorescence sensor measurements can be used as a proxy for nitrogen (N) status in plants in greenhouse conditions employing static sensor measurements. Indeed, practitioners of precision N management require determination of in-season plant N status in real-time at field scale to enable the most efficient N fertiliz... D. Mandal, R.D. Siqueira, L. Longchamps, R. Khosla

49. Soil Variability Mapping with Airborne Gamma-ray Spectrometry and Magnetics

The knowledge of spatial distribution of agricultural soils physical and chemical properties is critical for profitable and sustainable crop and food production. The collection of soil data presents however obvious problems arising from sampling a dense, opaque and very heterogeneous medium. Conventional methods consisting of ground-based grid survey are laborious, expensive and lack appropriate spatial resolution to allow best farm management decision. Over the past 50 years, airborne geophy... L. Ameglio, E. Stettler, D. Eberle

50. Printed Nitrate Sensors for In-soil Measurements

Managing nitrate is a central concert for precision agriculture, from delineating management zones, to optimizing nitrogen use efficiency through in-season applications, to minimizing leaching and greenhouse gas emissions. However, measurement methods for in-soil nitrate are limiting. State-of-the-art soil nitrate analysis requires taking soil or liquid samples to laboratories for chemical or spectrographic analysis. These methods are accurate, but costly, labor intensive, and cover limited g... C. Baumbauer, P. Goodrich, A. Arias

51. Comparison of Canopy Extraction Methods from UAV Thermal Images for Temperature Mapping: a Case Study from a Peach Orchard

Canopy extraction using thermal images significantly affects temperature mapping and crop water status estimation. This study aimed to compare several canopy extraction methodologies by utilizing a large database of UAV thermal images from a precision irrigation trial in a peach orchard. Canopy extraction using thermal images can be attained by purely statistical analysis (S), a combination of statistical and spatial analyses (SS), or by synchronizing thermal and RGB images, following RGB sta... L. Katz, A. Ben-gal, I. Litaor, A. Naor, A. Peeters, E. Goldshtein, V. Alchanatis, Y. Cohen

52. Investigating the Potential of Visible and Near-infrared Spectroscopy (VNIR) for Detecting Phosphorus Status of Winter Wheat Leaves Grown in Long-term Trial

The determination of plant nutrient content is crucial for evaluating crop nutrient removal, enhancing nutrient use efficiency, and optimizing yields. Nutrient conventional monitoring involves colorimetric analyses in the laboratory; however, this approach is labor-intensive, costly, and time-consuming. The visible and near-infrared spectroscopy (VNIR) or hyperspectral non-imaging sensors have been an emerging technology that has been proved its potential for rapid detection of plant nutrient... Y. El-mejjaouy, B. Dumont, A. Oukarroum, B. Mercatoris , P. Vermeulen

53. Toward Smart Soybean Variety Selection Using UAV-based Imagery and Machine Learning

The efficiency of crop breeding programs is evaluated by the genetic gain of a primary trait of interest, e.g., yield and resilience to stress, achieved in one year through artificial selection of advanced breeding materials. Conventional breeding programs select superior genotypes using the primary trait (yield) based on combine harvesters, which is labor-intensive and often unfeasible for single-row progeny trials due to their large population, complex genetic behavior, and high genotype-en... J. Zhou, J. Zhou

54. Use of MLP Neural Networks for Sucrose Yield Prediction in Sugarbeet

INTRODUCTION Sugar beet is one of the more technified agro industries in Spain. In the last years, it has leaded as well the digital transformation with the objective of maintaining sugar beet competitivity both national and internationally. Among other lines, very high potential has been identified in determining the sucrose content using a combination of Artificial Intelligence and Remote Sensing. This work presents the conclusions of an extensive data acquisition task, creation o... M. Cabrera dengra, C. Ferraz pueyo, V. Pajuelo madrigal, L. Moreno heras, G. Inunciaga leston, R. Fortes

55. You Can Not Manage What You Dont Measure

The problem of variability in soil nutrient analysis has been studied for years by a number of industry experts; unable to decipher and commercialize hyperspectral soil sensing. Many studies have taken years of testing to account for variability thathas a dramatic impacts on precision of recommendations. The main tradeoff we have identified is between accuracy and precision. Large quantities of raw data are requir... K. Fleming, N. Schottle, P. Nagel, G. Koch

56. Estimating Soil Carbon Stocks with In-field Visible and Near-infrared Spectroscopy

Agricultural lands can be a sink for carbon and play an important role in offsetting carbon emissions. Current methods of measuring carbon sequestration—through repeated temporal soil samples—are costly and laborious. A promising alternative is using visible, near-infrared (VNIR) diffuse reflectance spectroscopy. However, VNIR data are complex, which requires several data processing steps and often yields inconsistent results, especially when using in situ VNIR measurements. Using... C.J. Ransom, C. Vong, K.S. Veum, K.A. Sudduth, N.R. Kitchen, J. Zhou

57. Analytical and Technological Advancements for Soybean Quality Mapping and Economic Differentiation

In the past, measuring soybean protein and oil content required the collection of soybean seed samples and laboratory analyses. Modern on-the-go near-infrared (NIR) sensing technologies during the harvest and proximal remote sensing (aerial and satellite imagery) before harvest time can be used to provide an early estimate of seed quality levels, benchmark in-season predictions with at-harvest final seed quality and enable seed differentiation for farmers leading to better marketing strategie... A. Prestholt, C. Hernandez, I. Ciampitti , P. Kyveryga

58. Hay Yield Estimation Using UAV-based Imagery and a Convolutional Neural Network

Yield monitoring systems are widely used commercially in grain crops to map yields at a scale of a few meters. However, such high-resolution yield monitoring and mapping for hay and forage crops has not been commercialized. Most commercial hay yield monitoring systems only obtain the weight of individual bales, making it difficult to map and understand the spatial variability in hay yield. This study investigated the feasibility of an unmanned aerial vehicle (UAV)-based remote sensing system ... K. Lee, K.A. Sudduth, J. Zhou

59. Diagnosis of Grapevine Nutrient Content Using Proximal Hyperspectral Imaging

Nutrient deficiencies on grapevines could affect the fruit yield and quality, which is a major concern in vineyards. Nutrient deficiencies may be recognizable by foliar symptoms that vary by mineral nutrient and stress severity, but it is too late to manage when visible deficiency symptoms become apparent. The nutrient analysis in the laboratory is the way to get an accurate result, but it is time and cost-intensive. The differences in leaf nutrient levels also alter spectral characteristics ... C. Kang, M. Karkee, Q. Zhang, N. Shcherbatyuk, P. Davadant, M. Keller

60. Snap-shot Hyperspectral Camera for Potassium Prediction of Peach Trees Using Multivariate Analysis

Hyperspectral imaging (HSI) is an emerging technology being utilized in agriculture. This system could be used to monitor the overall health of plants or pest disease detection. As sensing technology advances, measuring nutrient levels and disease detection also progresses. This study aimed to predict the levels of potassium (K) content in peach leaves with the new snapshot hyperspectral camera. The study was conducted at the Clemson University Musser Fruit Research Farm (Seneca, SC, USA, 34.... J.J. Maja, M. Abenina, M. Cutulle, J. Melgar, H. Liu

61. Impact of Cover Crop and Soil Apparent Electrical Conductivity on Cotton Development and Yield

Cotton is one of the major crops in the New Madrid Seismic Zone (NMSZ) of the U.S. Lower Mississippi River Valley region. Because cotton production doesn’t leave a lot of crop residue in the field, low soil organic matter levels are common. While the benefits of crop rotation are well known, cotton is often grown year after year in the same fields for economic reasons. Soils in the region are generally quite variable, with areas of very high sand content. Winter cover crops and reduced ... E. Vories, K. Veum, K. Sudduth

62. Measuring Soil Carbon with Intensive Soil Sampling and Proximal Profile Sensing

Soils have a large carbon storage capacity and sequestering additional carbon in agricultural fields can reduce CO2 levels in the atmosphere, helping to mitigate climate change. Efforts are underway to incentivize agricultural producers to increase soil organic carbon (SOC) stocks in their fields using various conservation practices.  These practices and the increased SOC provide important additional benefits including improved soil health, water quality and – in some cases –... E. Lund, T. Lund, C. Maxton

63. Multi-sensor Imagery Fusion for Pixel-by-pixel Water Stress Mapping

Evaluating water stress in agricultural fields is fundamental in irrigation decision-making, especially mapping the in-field water stress variability as it allows real-time detection of system failures or avoiding yield loss in cases of unplanned water stress. Water stress mapping by remote sensing imagery is commonly associated with the thermal or the short-wave-infra-red (SWIR) bands. However, integration of multi-sensors imagery such as radar imagery or sensors with only visible and near-i... O. Beeri, R. Pelta, Z. Sade, T. Shilo

64. Functional Soil Property Mapping with Electrical Conductivity, Spectral and Satellite Remote Sensors

Proximal electrical conductivity (EC) and spectral sensing has been widely used as a cost-effective tool for soil mapping at field scale. The traditional method of calibrating proximal sensors for functional soil property prediction (e.g., soil organic matter, sand, silt, and clay contents) requires the local soil sample data, which results in a field-specific calibration. In this large-scale study consisting of 126 fields, we found that the traditional local calibration method had suffered w... X. Xiong, D. Myers, J. Debruin, B. Gunzenhauser, N. Sampath, D. Ye, H. Underwood, R. Hensley

65. Proximal Sensing of Penetration Resistance at a Permanent Grassland Site in Southern Finland

Proximal soil sensing allows for assessing soil spatial heterogeneity at a high spatial resolution. These data can be used for decision support on soil and crop agronomic management. Recent sensor systems are capable of simultaneously mapping several variables, such as soil electrical conductivity (EC), spectral reflectance, temperature, and water content, in real-time. In autumn 2021, we used a commercial soil scanner (Veris iScan+) to derive information on soil spatial variability for a per... H.E. Ahrends, A. Lajunen

66. Employment of the SSEB and CROPWAT Models to Estimate the Water Footprint of Potato Grown in Hyper-arid Regions of Saudi Arabia

Quantifying crops’ water footprint (WF) is essential for sustainable agriculture especially in arid regions, which suffers from harsh environmental conditions and severe shortage of freshwater resources such as Saudi Arabia. In this study, WF of irrigated potato crop was estimated for the implementation of precision agriculture techniques. The CROPWAT and the Simplified Surface Energy Balance (SSEB) approaches were adopted. Soil, plant, and yield samples were randomly collected from six... R. Madugundu, K. Al-gaadi, E. Tola

67. Mapping Soil Health and Grain Quality Variations Across a Corn Field in Texas

Soil health is a key property of soils influencing grain yield and quality. Within-field mapping of soil health index and grain quality can help farmers and managers to adjust site-specific farm management decisions for economic benefits. A study was conducted to map within-field soil health and grain protein and oil content variations using apparent electrical conductivity (ECa) and terrain attributes as their predictors. Two hundred and two topsoil samples were analyzed to determine soil he... K. Adhikari, D.R. Smith, C. Hajda, P.R. Owens

68. Improving Winter Wheat Nitrogen Status Monitoring Using Proximal Canopy Sensing and Agrometeorological Information with Machine Learning

Timely and accurate diagnosis of winter wheat nitrogen (N) status plays an important role in guiding precision N management. This study aims to combine proximal canopy sensing and agrometeorological information to establish a reliable winter wheat plant N concentration (PNC) monitoring model with seven machine learning (ML) algorithms (Random Forest Regression (RFR), Support Vector Regression (SVR), K-Nearest Neighbors Regression (KNNR), Partial Least Squares Regression (PLSR), Gradient Boost... X. Chen, Y. Miao, K. Yu, Q. Chang, F. Li

69. Water Stress Assessment for a Better Within-field Nitrogen and Irrigation Management

Swedish crops production is predominantly rain fed; and until now, food security has been safeguarded by relying on imports if seasonal variations of rainfall reduce yield quantity and quality. In Sweden, based on climate change scenarios, farmers organizations and representatives consider water to be a critical factor that potentially will limit the yield levels to a larger extent in the future. In the last decades, it is registered very dry seasons (e.g. 2018 and 2019) and long dry spells i... O. Alshihabi, B. Stenberg, J. Barron

70. Developing a Wheat Precision Nitrogen Management Strategy by Combining Satellite Remote Sensing Data and WheatGrow Model

Precision nitrogen (N) management (PNM) is becoming increasingly popular due to its ability to synchronize crop N demand with soil N supply spatiotemporally. The previous evidence has demonstrated that variable rate fertilization contributes to achieving high yields and high efficiencies. However, PNM at the regional level remains unclear and challenging. This study aims to develop a novel management zone (MZ)-based PNM strategy (MZ-PNM) to optimize the basal and topdressing N rates at the re... Y. Miao, X. Liu, Y. Tian, Y. Zhu, W. Cao, Q. Cao, X. Chen, Y. Li

71. Potential Benefits of Variable Rate Nitrogen Topdressing Strategy Coupled with Zoning Technique: a Case Study in a Town-scale Rice Production System

Integrating remote sensing (RS)-based variable rate nitrogen (N) recommendation (VRNR) algorithms and management zones (MZs) may improve the accuracy and efficiency of site-specific N management. However, its potential benefits for application in commercial rice production systems can hardly be assessed, since it requires to intervene in common agricultural practices and causes certain economic and environmental consequences. Through a machine learning approach, this study aims to comprehensi... J. Zhang, W. Wang, Z. Fu, Q. Cao, Y. Tian, Y. Zhu, W. Cao, X. Liu

72. Developing a Decision Support Model for Informing N Fertilization in Corn

Assessing crop nitrogen (N) status is crucial for optimizing the application of N fertilizers in corn. The Critical Nitrogen Dilution Curve (CNDC) stands as a fundamental model supporting diagnostic tool for identifying the corn nitrogen (N) status. However, there is a need for efficient, non-destructive methods to estimate the crop N status. The objective of this study was to evaluate the potential of three handheld sensors: SPAD, LI-600, and Green Seeker to diagnose corn N deficiencies at e... L. Lemes bosche, I. Ciampitti

73. Assessing the Distribution Uniformity of Broadcast-interseeded Cover Crops at Different Crop Stages by an Unmanned Aerial Vehicle

Drones can now carry larger payloads and have become more affordable, making them a viable option to use for broadcast-interseeding cover crops in the fall, prior to main crop harvest. This strategy has become popular in Ohio over the past two years. However, this new strategy arose quickly with a limited understanding of field performance of the drone’s distribution uniformity under different parameters such as rates, swath widths, speeds, or cash crop type. Therefore, the objective of... A.D. Thomas, J.P. Fulton, S. Khanal, O. Ortez, G. Mcglinch

74. Evaluation of Fall and Spring Nitrogen Rates Effect on Cereal Rye Forage Crude Protein and Tillering Using NDVI and Canopeo to Make Infield Nitrogen Rate Decisions

Fall applied nitrogen has been used to increase plant tiller and protein in wheat but less research has been done of its effects on cereal rye forage and how NDVI and Canopeo readings can be used to make nitrogen application management decisions. This study took place at the Ohio State University North Central Agricultural Research Station in Fremont, Ohio. The experiment is a randomized complete block split-plot design with four nitrogen rates in the fall (0, 30, 60, and 90 lbs/ac) and in th... K. Stahl, J.M. Hartschuh, A. Gahler

75. In-season Nitrogen Management for Wheat in Tunisia Using Proximal and Remote Sensing

While the cereal sector represents an important factor in the social and economic farming structure in Tunisia, the national wheat average yield is very low, estimated to 1.4 t/ha. However, the frequent spreading of nitrogen in large quantities to raise yields can lead to low use efficiency of N and groundwater pollution. In Sweden, digital tools using proximal and remote sensing for variable rate application (VRA) of nutrients were developed and widely used by farmers to optimize fertilizati... M. Mechri, O. Alshihabi, H. Angar, I. Nouiri, M. Soderstrom, K. Persson, S. Phillips

76. A Digital Twin for Arable Crops and for Grass

There is an opportunity to use process-based cropping systems models (CSMs) to support tactical farm management decisions, by monitoring the status of the farm, by predicting what will happen in the next few weeks, and by exploring scenarios. In practice, the responses of a CSM will deviate more and more from reality as time progresses because the model is an abstraction of the real system and only approximates the responses of the real system. This limitation may be overcome by using the CSM... F. Van evert, P. Van oort, B. Maestrini, A. Pronk, S. Boersma, M. Kopanja, G. Mimić

77. Assess the Feasibility of Remote Sensing Vegetation Index for In-season N Status Evaluation with Nitrogen Measurement from Commercial Field

Nitrogen (N) fertilization plays a crucial role in corn production in the United States. Corn, being a major commodity crop, relies heavily on N fertilization throughout its growth cycle to achieve optimal yields and maintain profitability. During this period of rapid N uptake, it's imperative for farmers to supply sufficient N at the right time to support proper crop development. However, the use of N fertilizer comes with environmental considerations as it can be susceptible to loss thr... A. Nguyen, A. Sharma, R. Prasad

78. Evaluating Nitrogen Use Efficiency in Wheat Using UAV Multispectral Images

Nitrogen (N) is one of the most important nutrients for crop growth and development. For crops, nitrogen fertilizer is the guarantee of high yield, but in practical applications, nitrogen fertilizer is often excessive. Therefore precise and rapid assessment of nitrogen use efficiency (NUE) plays a pivotal role in optimizing fertilizer utilization and ensuring responsible use of nitrogen in agriculture. While most of research evaluate NUE from management scales, e.g., from the field,  dis... J. Wang, K. Yu, S. T.meyer

79. Retrieving Nitrogen Levels in Almond Trees Using Hyperspectral Data at Leaf and Canopy Level

Almonds are a crucial specialty crop in California, dominating approximately 80 percent of the global almond supply. To enhance nitrogen usage efficiency, reduce groundwater contamination, and optimize resource allocation, ongoing research has been dedicated to improving nitrogen management practices in almond cultivation. This study specifically focused on the retrieval of nitrogen levels with uncertainty estimation at both the leaf and canopy levels of almond trees. Hyperspectral data was c... M. Chakraborty, A. Pourreza

80. Using Dynamic Crop Growth Data to Assess Early Season N Status in Maize

Nitrogen (N) is perhaps the most important mineral nutrient determining crop growth and yield. Fertilizer sources can vary, but it is used in practically all cropping systems, and accounts for one of the highest input costs. Farmers often overapply N to their fields as a simple "insurance policy" to guarantee maximum yields. This can be problematic due to the volatile nature of N in the environment, as well reducing potential profits by not optimizing the rates. ... A. Yore, P. Lanza, L. Longchamps

81. Delineation of Site-Specific Management Zones using Sensor-based Data for Precision N management

Nitrogen is a critical nutrient influencing crop yield, but the common practice of uniform application of nitrogen fertilizer across a field often results in spatially variable nitrogen availability for the crop, leading to over-application in some areas and under-application in others. This imbalance can cause economic losses and significant environmental issues. Precision nitrogen application involves application of N fertilizers based on soil conditions and crop requirements. One approach ... R. Joshi, R. Khosla, D. Mandal, R. Unruh, W.A. Admasu

82. Assessing the Nutritional Status of Field Crops by Remote Sensing During the Growing Season

Plant nutritional status is one of the most important indicators of stand vigour that can be monitored by remote sensing techniques. In this study, we focused on the possibility of assessing crop nutritional status, which was evaluated by plant nitrogen content, using different multispectral Earth remote sensing systems throughout the growing season. Core data were obtained from Sentinel-2 and PlanetScope satellites as well as from an unmanned aerial vehicle (UAV) system, and the data were co... B. Šusliková

83. Prediction of Field-scale Evapotranspiration Using Process Based Modeling and Geostatistical Time-series Interpolation

Irrigation scheduling depends on the combination of evaporative demand from the atmosphere, spatial and temporal heterogeneity in soil properties and changes in crop canopy during a growing season. This on-farm trial is based on data collected in 72-acre processing tomato field in Central Valley of California. The Multiband Spectrometric Arable Mark 2 sensors at three different locations in the field. Multispectral and thermal imagery provided by Ceres Imaging were collected eight times durin... G. Jha, F. Nazrul, M. Nocco, M. Pagé fortin, B. Whitaker, D. Diaz, A. Gal, R. Schmidt

84. Assessing Soybean Water Stress Patterns and ENSO Occurrence in Southern Brazil: an in Silico Approach

Water stress (WS) is one of the most important abiotic stresses worldwide, responsible for crop yield penalties and impacting food supply. The frequency and intensity of weather stresses are relevant to delimitating agricultural regions. In addition, El Nino Southern Oscillation (ENSO) has been employed to forecast the occurrence of seasonal WS. Lastly, planting date and cultivar maturity selection are key management strategies for boosting soybean (Glycine max (L.) Merr.) y... A. Carcedo, L.F. Antunes de almeida, T. Horbe, G. Corassa, L.P. Pott, I. Ciampitti, G.D. Hintz, T. Hefley, R.A. Schwalbert, V. Prasad

85. Evaluating Different Strategies for In-season Potato Nitrogen Status Diagnosis Using Two Leaf Sensors

Accurate and efficient in-season diagnosis of potato nitrogen (N) status is key to the success of in-season N management for improved profitability and environmental protection. Sensor-based approaches will support more timely decision making compared to plant tissue-based approaches. SPAD-502 (SPAD; Konica Minolta, Tokyo, Japan) is a commonly used sensor for potato N status diagnosis. Dualex Scientific+ (Dualex; METOS® by Pessl Instruments, Weiz, Austria) is a new leaf chlorop... S. Wakahara, Y. Miao, S. Gupta, C. Rosen

86. Effects of Crop Rotation on In-season Estimation of Optimal Nitrogen Rates for Corn Based on Proximal and Remote Sensing Data

A remote sensing and calibration strip-based precision nitrogen (N) management (RS-CS-PNM) strategy has been developed by the Precision Agriculture Center at the University of Minnesota to provide in-season N recommendation rates based on satellite imagery. This strategy involves the application of multiple N rates before planting and the identification of the agronomic optimum N rate (AONR) at V7-V8 growth stages using normalized difference vegetation index (NDVI) calculated using satellite ... A.C. Morales, D. . Quinn, K. Mizuta, Y. Miao

87. Advancing Adaptive Agricultural Strategies: Unraveling Impacts of Climate Change and Soils on Corn Productivity Using APSIM

With unprecedented challenges to achieve sustainable crop productivity under climate change and dynamic soil conditions, adaptive management strategies are required for optimizing cropping systems. Using sensors, cropping systems can be continuously monitored and the data collected by them can be analyzed for making informed adaptive management decisions to enhance productivity and environmental sustainability. But sensors can only tell the past and decisions bring implications into the ... H. Pathak, C.J. Warren, D. Buckmaster, D.R. Wang

88. Evaluating the Potential of In-season Spatial Prediction of Corn Yield and Responses to Nitrogen by Combining Crop Growth Modeling, Satellite Remote Sensing and Machine Learning

Nitrogen (N) is a critical yield-limiting factor for corn (Zea mays L.). However, over-application of N fertilizers is a common problem in the US Midwest, leading to many environmental problems. It is crucial to develop efficient precision N management (PNM) strategies to improve corn N management. Different PNM strategies have been developed using proximal and remote sensing, crop growth modeling and machine learning. These strategies have both advantages and disadvantages. There is... X. Zhen, Y. Miao, K. Mizuta, S. Folle, J. Lu, R.P. Negrini, G. Feng, Y. Huang

89. Spatio-temporal Variability of Intra-field Productivity Using Remote Sensing

Understanding the spatiotemporal variability in intra-farm productivity is crucial for management in making agronomic decisions. Furthermore, these decision-making processes can be enhanced using spatial data science and remote sensing. This study aims to develop a framework to asses the spatio-temporal variability of intra-farm productivity through historical satellite data and climate data. Historical satellite data and rainfall information from diverse fields across the United States (2016... E. Van versendaal, C. Hernandez, P. Kyveryga, I. Ciampitti

90. Exploring the Use of a Model-based Nitrogen Recommendation Tool and Vegetation Indices for In-season Corn Nitrogen Management in Alabama

Efficient nitrogen (N) management is critical for sustainable agriculture. Crop N needs and uptake changes within a field and it is annually influenced by weather conditions. Hence, site-specific in-season N application strategies are important to achieve optimum corn yield while minimizing negative impacts on the environment. This study evaluates the Adapt-N tool for in-season variable rate N application at two farmers’ fields in Alabama. The Adapt-N tool integrates soil and crop-based... P.R. Duarte, B.V. Ortiz, E. Abban-baidoo, E. Francisco, M.F. De oliveira

91. Satellite-based On-farm Variable Rate Nitrogen Management on and Main Spatial Drivers of Cotton Yield, Nitrogen Use Efficiency, and Profitability

In the United States of America, Georgia is the second largest cotton producing state, responsible for 2.6 million bales produced in 2022. In Georgia, cotton is the most economically important row crop, with ~514,000 ha harvested and $USD 1.5 billion in economic impact in the state economy in 2022. Nitrogen (N) fertilizer is one of the main inputs required to optimize cotton lint yield and quality, while also being a large input cost representing ~25% of variable costs. As a non N-fixing crop... L. Bastos, W. Porter, G. Scarpin

92. Sensor Based Fertigation Management

Sensor-based fertigation management (SBFM) is a relatively new technology for directing nitrogen (N) decisions, specifically tailored for delivery of N via center pivot irrigation systems (fertigation). The development of SBFM began in 2018 at the University of Nebraska-Lincoln with the help of cooperating producers across the state. Over two dozen field sites provided testbeds for the development and evaluation of the technology. The key technique in this fertigation approach is th... J. Stansell, J.D. Luck, T. Cross, K.J. Bathke, T. Smith

93. In-Season Nitrogen Management: Leveraging Data Visualization for Precision Agriculture

The agricultural sector nitrogen management-related research has been extensively high by experiencing a data revolution, with an increasing influx of information from diverse sources like sensors, satellites, and Unmanned Aerial Vehicles (UAVs) imaging technologies. In this context, effective in-season nitrogen data management has become a critical factor; however, the ability of farmers to visualize the impact of such technologies in field research settings has been limited. This ... C. Narayana, S. vanderplas, K.J. Bathke, J.D. Luck

94. Effect of Terrain and Soil Properties on the Effectiveness of Crop-model Based Variable Rate Nitrogen in Corn

Growers may be reluctant to adopt variable rate nitrogen (VRN) management because of potential loss in profit and yield. This study assessed the influence of terrain attributes and soil characteristics on the effectiveness of crop-model-based variable rate nitrogen (N) for corn. To evaluate the effectiveness of the VRN methods, yield, total N rate, and N use efficiency (NUE) were compared with the grower’s management. As a crop-model-based recommendation tool, Adapt-N was used. Producti... L. Puntel, L. Thompson, G. Balboa, T. Mieno, P. Paccioretti

95. On-farm Evaluation of a Satellite Remote Sensing-based Precision Nitrogen Management Strategy

Improper management of nitrogen (N) fertilizers in the cropping systems of the U.S. Midwest has resulted in significant N leaching into the Mississippi River Basin that flows to the Gulf of Mexico. The majority of the U.S. Midwest states need to develop a plan for a nutrient loss reduction strategy to decrease N and phosphorous loadings into waters and the Gulf of Mexico by 45% by 2050. In Minnesota, high nitrate concentration and loads have not been significantly reduced in surface and groun... J. Lu, Y. Miao, C.J. Ransom, F. Fernández

96. Machine Learning Algorithms in Detecting Long-term Effect of Climatic Factors for Alfalfa Production in Kansas

The water levels of the Ogallala Aquifer are depleting so much that agricultural land returns in Kansas are expected to drop by $34.1 million by 2050. It is imperative to understand how frequent droughts and the contrasting rates of groundwater withdrawal and recharge are affected by climate shifts in Kansas. Alfalfa, the ‘Queen of Forages’, is a water demanding crop which supplies high nutritional feed for beef industry that offered Kansas producers a $500 million production valu... F. Nazrul, J. Kim, S. Dey, S. Palla, D. Sihi, B. Whitaker, G. Jha

97. Dimensionality Reduction and Similarity Metrics for Predicting Crop Yields in Sparse Data Microclimates

This study explores and develops new methodologies for predicting agricultural outcomes, such as crop yields, in microclimates characterized by sparse meteorological data. Specifically, it focuses on reducing the dimensionality in time series data as a preprocessing step to generate simpler and more explainable forecast models. Dimensionality reduction helps in managing large data sets by simplifying the information into more manageable forms without significant loss of information. We explor... L. Huender, M. Everett

98. Proximal, Drone, and Satellite Sensors for In-season Variable Nitrogen Rate Application in Corn: a Comparative Study of Fixed-rate and Sensor-based Approaches

Effective nitrogen (N) management is essential for optimizing corn yield and enhancing agricultural sustainability. Traditional N application methods, typically uniform split pre-plant and in-season applications, often neglect the spatial and temporal variability of N requirements across different fields and years, potentially leading to N overuse. With the rise of precision agriculture technologies, it is crucial to reassess these conventional practices. This study had two main objectives: f... A. Jakhar, A. Bhattarai, L. Bastos, G. Scarpin

99. Using Simulation Modeling to Evaluate the Corn Response to Deficit Irrigation Imposed During Reproductive Period

In Alabama, as in many regions of the southeastern states, flash droughts and rising temperatures present significant challenges to the sustainability of agricultural systems. Specifically maize, a crop with a high water demand, faces production risks due to these adverse conditions. The study explores the optimum irrigation scheduling strategies on maize (Zea mays L.) in the reproductive growth stages through the evaluation of the impact of three irrigation treatments, defined by Maximum All... J.S. Velasco, B.V. Ortiz, L. Nunes, R. Prasad, G. Hoogenboom